

C	Programming	Language
The	Ultimate	Guide	for	Beginners

	

Darrel	L.	Graham

TABLE	OF	CONTENTS

Introduction

Chapter	1:	What	Is	The	C	Language?

Chapter	2:	Setting	Up	Your	Local	Environment

Chapter	3:	The	C	Structure	and	Data	Type

Chapter	4:	C	Constants	and	Literals

Chapter	5:	C	Storage	Classes

Chapter	6:	Making	Decisions	In	C

Chapter	7:	The	Role	Of	Loops	In	C	Programming

Chapter	8:	Functions	in	C	Programming

Chapter	9:	Structures	and	Union	in	C

Chapter	10:	Bit	Fields	and	Typedef	Within	C

Chapter	11:	Input	Output	(I/O)	In	C

Chapter	12:	C	Header	Files	and	Type	Casting

Chapter	13:	Benefits	Of	Using	The	C	Language

Conclusion

Resources	and	Attributions

© Copyright	2016	-	All	rights	reserved.
The	contents	of	this	book	may	not	be	reproduced,	duplicated	or	transmitted	without	direct	written	permission	from	the
author.

	

Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the	publisher	for	any	reparation,	damages,
or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.

	

Legal	Notice:

This	 book	 is	 copyright	 protected.	 This	 is	 only	 for	 personal	 use.	 You	 cannot	 amend,	 distribute,	 sell,	 use,	 quote	 or
paraphrase	any	part	or	the	content	within	this	book	without	the	consent	of	the	author.

	

Disclaimer	Notice:

Please	note	 the	 information	contained	within	 this	document	 is	for	educational	and	entertainment	purposes	only.	Every
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical
or	 professional	 advice.	 The	 content	 of	 this	 book	 has	 been	 derived	 from	 various	 sources.	 Please	 consult	 a	 licensed
professional	before	attempting	any	techniques	outlined	in	this	book.

	

By	 reading	 this	document,	 the	 reader	agrees	 that	under	no	circumstances	are	 is	 the	author	 responsible	 for	any	 losses,
direct	or	indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	including,	but
not	limited	to,	—errors,	omissions,	or	inaccuracies.

Introduction
C	Programming	Language	introduces	you	to	the	most	commonly	used	programming
language,	one	that	has	been	the	basis	for	many	other	versions	over	the	years.	It	is	a
great	book,	not	just	for	beginning	programmers,	but	also	for	computer	users	who
would	want	to	have	an	idea	what	is	happening	behind	the	scenes	as	they	work	with
various	computer	programs.

In	this	book,	you	are	going	to	learn	what	the	C	programming	language	entails,	how	to
write	conditions,	expressions,	statements	and	even	commands,	for	the	language	to
perform	its	functions	efficiently.	You	will	learn	too	how	to	organize	relevant
expressions	so	that	after	compilation	and	execution,	the	computer	returns	useful
results	and	not	error	messages.	Additionally,	this	book	details	the	data	types	that	you
need	for	the	C	language	and	how	to	present	it	as	well.

Simply	put,	this	is	a	book	for	programmers,	learners	taking	other	computer	courses,
and	other	computer	users	who	would	like	to	be	versed	with	the	workings	of	the	most
popular	computer	language,	C.

	

Chapter	1:	What	Is	The	C	Language?
	
C	Programming	is	one	of	the	most	useful	and	easy	to	use	computer	programming
languages.	The	person	who	came	up	with	this	C	Programming	went	by	the	name	of
Dennis	M.	Ritchie,	and	he	worked	at	Bell	Telephone	Laboratories.	At	the	time,
precisely	in	1972,	C	Programming	was	meant	to	help	in	improving	the	now	widely
used	UNIX	operating	system,	whose	development	had	begun	in	1969.	And	did	it?
Yes,	it	did.	Its	kernel	code	now	began	to	use	fewer	lines	than	it	did	before	when	it
used	the	assembly	programming	language,	which	is	commonly	abbreviated	as	asm.

	

That	does	not	mean	that	the	C	language	is	restricted	to	only	a	few	lines.	It	can
actually	take	as	few	as	three	lines	or	as	many	as	millions	of	them.	At	the	same	time,	it
is	written	in	a	single	text	file	or	a	number	of	them,	the	text	files	bearing	the	extension,
‘c’,	as	in,	hello.c.

	

As	for	its	introduction	to	the	market,	the	C	programming	language	was	not	available
to	the	public	until	1978	when	Ritchie	joined	hands	with	Brian	Kernighan	to	produce
the	first	set	for	commercial	use.	That	is	where	the	now	common	term,	K	&	R
standard,	was	derived	from	–	Kernighan	and	Ritchie.	It	is	important	to	point	out	that
the	C	programming	language	was	officially	formalized	by	the	American	National
Standard	Institute,	abbreviated	as	ANSI,	in	1988.

	

Other	Early	Projects	Improved	By	C

	

Oracle

	

UNIX	was	not	the	only	project	to	be	made	more	efficient	by	the	C	Language.	The
Oracle	database	also	benefitted	when,	in	1983,	its	initial	code	that	had	been	written	in
asm	was	re-written	in	the	C	language.	The	development	of	the	Oracle	database	had
begun	in	1977.

	

Windows	1.0

	

Windows	1.0,	which	was	released	in	1985,	is	said	to	be	partially	written	in	C	and
partially	in	assembly	or	asm.	The	source	code	is,	however,	not	available	to	the	public.

	

The	Linus	kernel

	

The	Linux	kernel,	which	was	released	in	1992	as	a	composite	part	of	the	GNU
operating	system,	and	whose	development	began	in	1991,	also	uses	the	C	Language.
Although	some	of	GNU’s	components	use	Lisp	programming	languages,	it	still	has
others	that	use	the	C	programming	language.	Incidentally,	any	idea	what	GNU
represents?	Well,	apparently,	IT	is	not	all	serious	stuff	without	fun	–	GNU	is	…	Wait
for	it…	‘GNU’s	Not	Unix’	-	some	artistic	thinking	there.

	

Anyway,	for	practical	purposes,	C	language	is	more	procedural	than	anything	else	and
can	be	used	for	different	operating	systems.	It	is	actually	the	most	used	so	far
worldwide,	though	it	faces	great	competition	from	Java,	another	popular
programming	language.

	

Who	uses	the	C	Programming	Language	today?

	

The	C	Programming	language	is	mostly	used	by	software	developers	or	programmers
and	particularly	those	using	the	operating	system,	UNIX,	C	compiler,	and	virtually
every	application	program	of	UNIX.	Suffice	it	to	say,	the	C	programming	language	is
today	the	most	used	professional	language	in	the	world	of	computers.

	

Modern	systems	based	on	C	Programming

	

The	C	Programming	language,	as	has	been	stated	before	is	still	widely	in	use.	It
cannot	pass	as	a	programming	language	of	old	just	because	it	helped	to	upgrade
ancient	programs.	As	this	book	will	show,	despite	software	experts	having	developed
other	programming	languages,	C	is	still	in	great	demand.

	

Here	are	some	modern	systems	still	based	on	C:

	

1.	 Microsoft	Windows

The	Microsoft	Windows	operating	systems	dominate	the	computer	market,	taking
around	90%	market	share.	And	their	kernel	is	written	in	the	C	programming	language
for	most	part,	fewer	parts	being	written	in	asm.

	

2.	 Linux

Linux	is	another	system	written	in	the	C	programming	language.	This	is	significant
because,	in	addition	to	Linux	being	used	in	personal	computers,	it	is	also	the	system
used	by	the	world’s	topmost	supercomputers;	actually	the	top	500	of	them.	Just	to
bring	it	home	better,	here	are	the	10	leading	supercomputers	in	the	world,	part	of	the
list	of	computers	using	the	C	language:

	

(i)														Tianhe-2

Tianhe-2	is	the	name	of	the	world’s	most	powerful	supercomputer.	It	is	owned
by	the	National	Supercomputer	Center,	which	is	in	Guangzho,	China.	This
great	computer	was	built	in	China	by	the	National	University	of	Defense
Technology,	abbreviated	as	NUDT.

(ii)											Titan

This	one	joined	the	top	league	after	being	upgraded	in	2012.	Its	location	is	Oak
Ridge	National	Laboratory	in	the	US,	and	its	user	is	the	United	States
Department	of	Energy.

(iii)									Sequoia

This	is	another	US	supercomputer,	and	it	is	located	in	Lawrence	Livermore
National	Laboratory	in	the	state	of	California.		It	has	been	used	largely	in
matters	of	climate,	energy,	as	well	as	astronomy.

(iv)									K	Computer

The	K	Computer	is	a	product	of	Fujitsu,	who	built	it	at	the	Advanced	Institute
for	Computational	Science	(AICS).	This	institute	is	within	RIKEN,	Japan’s
biggest	research	institution,	situated	in	the	city	of	Kobe.

(v)											Mira

This	is	another	of	US’s	supercomputers.	It	is	located	within	the	Argonne
National	Laboratory,	which	is	at	the	outskirts	of	Chicago,	and	is	largely	used
the	US	Department	of	Energy.

(vi)									Piz	Daint

This	one	is	to	be	found	in	Switzerland,	precisely	in	its	southern	city	of	Lugano.
It	is	located	at	the	Swiss	National	Supercomputing	Center.	Europe	does	not
have	a	more	powerful	supercomputer	than	this	one.

(vii)						Shaheen	II

This	supercomputer	is	located	at	the	King	Abdullah	University	of	Science	and
Technology	in	Saudi	Arabia,	and	is	the	newest	amongst	the	top	10,	having	gone
live	in	2015.

(viii)				Stampede

This	one	is	located	within	the	Texas	Advanced	Computing	Center	in	the	US.

(ix)									Juqueen

This	supercomputer,	which	is	found	in	Germany,	is	Europe’s	second	to	make
the	list	of	Top	10.	It	is	located	within	Forschungszentrum	Juelich.

(x)											Vulcan

This	is	a	US	supercomputer	located	within	the	Lawrence	Livermore	National
Laboratory.

3.	 Mac

The	Mac	is	entirely	run	on	C,	including	its	drivers	and	programs,	and	that	applies	on
all	its	models,	just	as	happens	in	Windows	and	the	Linux.

4.	 Mobile	Phones

When	it	comes	to	the	Windows	phone,	the	android,	and	also	the	iOS,	their	kennels	are
in	the	C	language.	In	short,	their	kernels	are	written	just	like	those	ones	in	the
computers	described	above,	only	they	are	mobile	adaptations.

5.	 Databases

Most	databases	used	in	financial	systems;	telecommunications;	entertainment;	health
and	education	systems;	the	general	web	and	elsewhere;	are	mostly	written	in	C;	or
even	C++.	These	include	the	most	popularly	used,	like	the	Oracle,	MySQL,	MS	SQL
Server,	and	even	PostgreSQSL.

Main	Advantages	of	Using	the	C	Programming	Language

1)									It	is	a	structured	language

2)									It	is	relatively	easy	for	someone	to	learn	from	scratch

3)									It	is	efficient	in	the	writing	of	programs

4)									It	does	well	in	different	computer	platforms

5)									It	also	does	fine	with	low-level	activity.

	

Everyday	Use	of	C

It	may	be	helpful,	for	the	sake	of	beginners,	to	provide	a	breakdown	of	where	the	C
programming	language	is	most	commonly	used.	The	C	language	is	actually	easy	to
find,	not	just	in	Operating	Systems,	but	also	in	Language	Compilers;	Assemblers;
Text	Editors;	Print	Spoolers;	Network	Drivers;	Language	Interpreters;	Utilities;
Network	Drivers;	and	as	already	mentioned,	in	modern	programs	and	databases.

Suffice	it	to	say,	the	C	programming	language	is	very	popular	with	writers	of	modern
software	applications,	some	of	which	are	used	in	3D	movies	and	embedded	systems
like	those	used	in	TVs,	remote	controls,	and	so	on.

Taking	the	example	of	a	common	utility	item,	the	motor	vehicle,	here	are	some	of	its
features	that	have	been	programmed	in	the	C	language:

1.	 The	automatic	transmission
2.	 The	systems	that	detect	the	vehicle	tire	pressure
3.	 The	sensors	that	monitor	the	levels	of	oxygen,	temperature	and	oil
4.	 The	various	memory	categories,	including	that	of	mirror	settings
5.	 The	dashboard	display
6.	 The	anti	lock	brakes
7.	 The	vehicle	stability	control,	which	is	automatic
8.	 The	cruise	as	well	as	the	airbag	controls
9.	 The	child	proof	locking	system

10.				The	climate	control

	

The	motor	vehicle	example	is	just	one	among	other	utility	items	that	have	systems
written	in	C.	Even	many	vending	machines	from	where	you	buy	soda	have	C
language	systems.	Many	cash	registers	at	shopping	stores	are	also	run	in	programs
written	in	the	C	language.

What	these	devices	that	make	life	relatively	easy	have	in	common	are	embedded
systems	that	run	like	small	computers	that	have	program	running	microprocessors
written	in	C.	That	is	why	the	systems	detect	it	when	someone	presses	a	key	and	they
react	in	ways	pre-set.	They	also	display	relevant	information	accordingly.	Many
manufacturers	of	utility	items	prefer	to	have	programs	written	in	the	C	language
because	it	has	features	that	allow	for	flexibility;	enhance	efficiency;	and	which	are
compatible	with	many	types	of	hardware.

Why	Bother	Learning	The	C	Programming	Language?

Is	C	the	only	programming	language	accessible	to	users	today?	Of	course	not!	There
are	other	programming	languages	that	programmers	and	other	computer	users	can
learn	and	utilize,	some	low	than	C,	and	still	some	higher	and	more	modern	than	C.	So
why	C…?	

There	are	other	reasons	for	wanting	to	learn	the	C	programming	language,	besides	the
ones	already	mentioned	in	this	book.	First	of	all,	the	C	programming	language	existed
long	before	many	other	computer	languages	were	ever	thought	of.	As	such,	it	has
built	a	rich	source	code	base.	In	short,	you	can	learn	a	lot	and	there	is	a	rich	pool	of
resources	to	tap	from	in	this	regard.	C	also	has	lots	of	functions	that	you	can	use	to
meet	your	program	needs.

At	the	same	time,	for	the	same	reason	that	the	C	programming	language	has	been	in
use	for	a	long	time,	you	are	unlikely	to	find	challenges	in	its	use	that	you	cannot	get
solutions	to	fast.	Users	of	C	have,	over	the	years	posted	questions	over	the	internet
and	received	solutions	from	other	users	as	well	as	experts,	and	you	can	learn	a	lot
about	C	from	those	discussions.	In	addition,	there	are	many	tutorials	provided	free	on
the	web,	and	those	too	make	it	relatively	easy	for	someone	with	interest	to	learn	the	C

language.

Another	plus	for	C	is	that	it	is	the	computer	language	that	UNIX	uses,	and	UNIX	is
among	the	leading	computer	software.	Other	great	operating	systems	use	the	C
programming	language	as	well.	For	that	reason,	C	has	become	more	like	the	lingua
franca	of	the	programming	world.	It	is	also	worthwhile	noting	that	the	way	C
expresses	ideas	makes	it	easy	for	users	to	appreciate	them	and	also	implement	them
with	little	or	no	support.

Something	else	that	would	encourage	you	to	learn	the	C	programming	language	is
that	it	has	been	the	basis	for	other	computer	languages,	and	many	other	languages
have	picked	something	worthwhile	from	C.	You	will,	for	example,	find	some
principles	and	some	commands	being	in	use	in	C	and	also	in	use	in	other	computer
languages.	What	this	means	that	you	can	share	tips	with	other	programmers	who	use
other	languages	and	communicate	easily	with	them	too.

	

	

Chapter	2:	Setting	Up	Your	Local	Environment
	

It	often	helps	to	have	a	strategy	when	trying	to	learn	something	new.	In	the	case	of
learning	the	C	programming	language,	it	is	imperative	that	you	proceed	from	the
basics	to	the	more	complex	aspects.	That	is	why	it	is	a	good	thing	we	began	the	book
by	laying	out	the	beginnings	of	C	and	how	it	has	helped	build	other	programming
languages.

Preparing	To	Learn	The	C	Programming	Language

It	is	a	good	idea	to	begin	by	downloading	and	then	installing	the	compiler.	The	reason
you	need	to	do	this	early	is	so	as	to	have	a	program	that	can	interpret	your	C	code,
and	converting	it	into	computer	friendly	signals.

Is	there	a	universal	compiler	available?

The	answer	is	in	the	negative,	as	there	are	some	programs	that	are	suitable	for
Windows	and	not	great	with	other	operating	systems,	or	great	for	Linux	and	not	very
good	with	other	operating	systems.

Here	are	some	helpful	suggestions:

Install	Microsoft	Visual	Studio	Express,	or	even	MinGW,	if	your	computer	is
running	on	Windows.
Install	XCode	in	case	your	computer	is	running	on	Mac
Install	gcc	if	your	computer	has	Linux	as	the	operating	system

As	has	already	been	noted,	you	can	write	a	C	program	in	lines	as	few	as	three	or	as
many	as	you	wish.	The	text	files	need	to	have	the	extension,	“.c”.	You	can,	for
example,	write	hi.c,	when	your	source	statement	contains,	hi.	To	write	your	C	program,
you	use	a	text	editor	like	vi,	vim,	Emacs	and	such	others.	Essentially,	you	use	a	text
editor	to	enter	your	statements	from	the	source	to	the	program,	using	your	chosen	language,	say,	the
C	programming	language.

	

IBM	is	known	for	using	XEDIT	as	their	text	editor,	and	operators	who	use	UNIX
systems	are	known	for	using	Emacs	as	well	as	vi	as	their	preferred	text	editors.	For
fresh	starters,	vi	stands	for	visual	editor.	In	accomplishing	laying	out	commands,	it	uses
keystroke	combinations	in	place	of	menus,	making	it	faster	than	most	other	text	editors.
You	may	also	like	the	Pico	text	editor	if	you	are	entirely	new	in	using	UNIX	systems.

	

Setting	the	Environment

	

In	this	chapter,	you	are	going	to	learn	how	to	set	up	your	C	programming	environment,	if
that	is	the	way	you	want	to	go.	Otherwise,	if	you	simply	want	to	test	how	successful	you

are	in	writing	in	the	C	language,	you	can	log	onto	http://www.compileonline.com.	In
setting	the	environment	required	for	the	C	programming	language,	you	need	to	ascertain
that	the	computer	you	are	using	has	two	specific	software	tools,	namely,	the	text	editor
and	the	C	compiler.

	

(1)	Role	of	the	text	editor	tool

	

This	is	the	tool	to	use	when	doing	the	actual	typing	of	your	program.	Besides	the	text
editors	already	mentioned,	like	the	vi	and	the	Emacs,	there	are	others	like	the	Windows
Notepad,	the	OS	Edit	command,	Epsilon,	and	even	Brief.

When	you	use	a	text	editor,	what	you	create	goes	by	the	term,	source	file,	and	what	it
contains	are	the	source	codes	for	your	program.	As	noted	earlier,	C	programs	have	the
extension	“.c”.

	

The	text	editor	is	so	basic	to	programming	that	you	cannot	begin	doing	any	programming
without	a	text	editor	ready	for	use.	However,	with	your	chosen	text	editor	ready,	you	write
your	computer	program;	next	you	save	it	in	form	of	a	file;	and	after	compiling	it,	you
execute	it.

	

(2)	Role	of	the	Compiler

	

What,	exactly,	is	a	compiler?	Well,	you	can	term	it	a	computer	program,	though
sometimes	its	make-up	is	a	combination	of	more	than	one	computer	program.	What	is	its
role	in	the	C	language?	The	role	of	the	compiler	is	to	make	the	source	file	you	have
created	usable	by	your	computer.	In	short,	as	it	is	initially,	the	source	code	that	you	have
written	in	your	source	file	is	the	human	readable	source	that	is	now	contained	in	your
program.	Yet	you	would	like	that	source	code	put	into	binary	form,	which	is	what	your
target	computer	language	is	made	of.	Once	you	are	done,	you	will	have	translated	your
source	code	into	object	code,	the	term	used	after	the	process.

	

So,	a	compiler	effectively	compiles	your	source	code	into	your	chosen	machine	language,
making	it	possible	for	your	computer’s	CPU	(Central	Processing	Unit)	to	execute	your
instructions,	and	finally	producing	executable	programs.	You	will	often	have	a	ready
compiler	on	the	net,	which	you	can	use	free	of	charge.	Many	programmers	prefer	using
GNU	C/C++	compiler,	although,	depending	on	the	operating	system	one	has,	some	go	for
HP	and	sometimes	Solaris.	The	reason	you	see	C	and	C++	put	together	is	that	what	works
for	the	C	language	also	works	for	C++.

	

http://www.compileonline.com

Installing	your	GNU	C/C++	compiler:

	

It	is	not	surprising	to	find	the	compiler	already	installed	on	your	system,	particularly	when
your	computer	is	using	either	Linux	or	UNIX,	so	it	is	good	to	check	before	proceeding	to
install	afresh.

	

Checking	If	Your	Computer	Has	The	Compiler

	

How	do	you	check?	Simple	–	after	opening	a	terminal,	try	and	locate,	say,	your	Linux	C
compiler.	And	the	way	to	do	this	is	by	using	the	which-command:	$	which	gcc.	If	your
machine	actually	has	the	C	compiler,	you	will,	very	likely,	see	the	output,	/usr/bin/gcc.
That	/usr/bin	is,	obviously,	a	directory.

	

Now,	to	see	the	compiler	version	that	you	have,	you	need	to	type,	$	gcc	–v	as	your
command,	within	the	command	line	available.		Just	in	case	your	computer	already	has	the
compiler	you	are	looking	for,	the	message	you	will	receive	will	look	like	this:

	

Using	specs	already	built	in

Target:	i386-redhat-linux

Configured	with:	../configure	—prefix=/usr	…….

Thread	model:	posix

gcc	version	4.1.2	20080704	(Red	Hat	4.1.2-46)

	

Installing	a	Linux/UNIX	Compiler	

	

Suppose	your	computer	does	not	have	the	compiler	installed?	Well,	you	will	have	to	do
the	installation	yourself.	Luckily,	it	is	an	easy	process.	All	you	need	to	do	is	log	onto
http://gcc.gnu.org/install/,	and	follow	the	simple	guidance	provided	on	the	site.

	

Installing	The	Mac	OS	X	Compiler

	

However,	in	case	your	computer	is	using	the	Mac	OS	X,	and	not	Linux	or	UNIX,	you	can
log	onto	the	apple	website,	developer.apple.com/technologies/tools/,	and	then	download
the	relevant	code,	which	happens	to	be	Xcode.	The	site	gives	instructions	that	are	easy	to
follow,	so	installation	of	your	Xcode	development	environment	should	be	relatively	easy.

http://gcc.gnu.org/install/

After	you	have	the	environment	ready,	you	will	be	in	a	position	to	make	use	of	the	GNU
compiler	in	relation	to	the	C	programming	language.

	

Installing	the	Windows	compiler

	

What	you	need	to	do	in	case	your	computer	is	using	Windows,	is	to	log	onto
www.mingw.org,	which	is	actually	the	homepage	for	MinGW,	and	by	clicking	on	the	link
provided	you	will	be	able	to	download	the	MinGW,	which	is	the	compiler	you	need	for
your	computer.	During	the	process,	you	should	be	able	to	ascertain	that	you	are
downloading	a	version	of	MinGW	that	is	current	–	the	latest.	Just	to	be	sure	you	are
downloading	the	correct	program,	see	that	it	reads	something	like:	MinGW-
<version>.exe.

	

Note	too	that	there	is	a	minimum	set	of	programs	you	need	to	download	for	Windows	if
you	want	to	have	your	compiler	working	as	required.	They	include	gcc-core;	gcc-g++;
binutils,	as	well	as	MinGW	runtime.	You	could	install	others	as	well,	but	those	mentioned
make	the	bare	minimum.	Remember	to	include	to	the	PATH	variable	the	sub-directory,
bin,	as	you	install	your	MinGW,	reason	being	that	it	will	help	you	specify	tools	in	the
command	line	just	by	looking	at	their	names,	which	are	relatively	simple.	After
successful	completion	of	your	installation,	you	should	be	able	to	run	the	tools	you
downloaded	right	from	the	command	line	–	tools	like	the	gcc;	ranlib,	and	the	rest.	

	

http://www.mingw.org

	

Chapter	3:	The	C	Structure	and	Data	Type
	

It	is	important	that	you	know	how	the	structure	of	C	looks	like	at	the	bare	minimum,
before	you	can	proceed	to	learn	what	its	main	building	blocks	are.	Once	you	know	these
basics,	they	will	become	your	reference	points	as	you	learn	more	about	the	C	language.

	

Here	are	the	basic	components	of	the	C	program:

1.	 The	pre-processor	commands
2.	 The	functions
3.	 The	variables
4.	 The	Statements	as	well	as	Expressions
5.	 The	comments

	

Example

Let	us	use	our	example:	“Hello,	learners!”	What	code	could	we	use	to	print	those	words?

(i)				First	of	all,	you	would	have	your	first	program	line	as:	#include	<stdio.h>,
being	your	pre-processor	command.

(ii)	Your	next	would	contain:	int	main(),	being	the	program’s	main	function;	and
that	is	where	the	program	begins	to	execute	commands.

(iii)					The	line	that	follows	is:	/*…*/.	The	compiler	usually	ignores	it	because	it	is
where	you	are	meant	to	add	your	comments	if	you	so	wish.	You	call	such	lines
simply	comments.	Just	for	illustration’s	sake,	you	could	enter	the	comments:	/*
beginning	to	learn	C	*/.

(iv)					The	next	line	that	follows	is:	printf(…);	and	that	is	the	line	that	enables	your
message,	“Hello,	learners!”	to	appear	on	your	screen.	So,	essentially,	after	your
entry,	you	will	have:	printf(“Hello	learners!\n”)

(v)							Finally,	you	have	the	next	line	returning	the	value	0	and	terminating	the	main
function,	().	

	

Compiling	and	Executing	the	C	language	program

At	this	juncture,	you	need	to	learn	how	to	go	about	saving	your	source	code,	and	also
running	it.	Remember	we	mentioned	entering	your	source	code	so	that	your
computer’s	CPU	can	process	it	accordingly.

The	easy	steps	to	follow:

Get	your	text	editor	open,	and	then	type	in	the	source	code	that	you	have

Next,	save	your	file	in	the	name	of	hello.c
The	next	action	is	opening	a	command	prompt	and	moving	to	the	specific

directory	where	you	have	just	saved	your	file.
Once	there,	type,	gcc	hello.c
Tap	enter	after	typing	that	and	you	will	have	compiled	your	code
In	case	your	process	has	been	good	and	you	have	no	errors	within	your	code,

you	will	be	prompted	to	proceed	to	the	line	that	follows.	After	this,	you	will	see
an	executable	file	generated	–	a.out
You	now	need	to	type	a.out	to	have	your	program	executed.
Everything	having	gone	well,	you	should	be	able	to	view	your	output	–	Hello

learners!	–	displayed	on	your	screen.
So,	basically,	what	you	should	be	seeing	on	your	screen	is	something	like

this:

$	gcc	hello.c

$./a.out

Hello,	learners!

Basic	C	Syntax

For	any	process	to	work	well,	and	for	you	to	be	able	to	issue	the	right	commands,	you
should	be	able	to	identify	every	item	for	what	it	is.	That	will	avoid	confusion	and
minimize	errors.	For	that	reason,	in	C	programming,	you	need	identifiers.

What,	Exactly,	Is	An	Identifier?

In	C	language	programming,	an	identifier	helps	you	to	locate	a	variable;	a	function;
and	any	other	item	that	you,	as	the	user,	may	have	defined.		You	will	see	an	identifier
beginning	with	an	alphabet	–	anywhere	from	A	up	to	Z;	and	sometimes	an
underscore:	‘_’,	which	is	then	followed	by	a	zero	and	sometimes	letters	or	more
underscores.	Sometimes	digits,	anywhere	from	0	to	9,	may	follow.

Note:

When	using	the	C	language	programming,	you	cannot	use	punctuation	like	@,
%,	£,	and	such,	within	your	identifiers.
The	C	language	is	also	case	sensitive.	In	other	words,	the	lower	case	cannot
respond	to	the	upper	case	situation.	For	example,	learners	and	Learners	are
recognized	as	two	entirely	different	identifiers.

To	make	it	more	clear,	below	are	some	identifiers	that	are	acceptable	when	using	C:

abc;	hername30;	a40c9;	retVal;	_temp;	a

In	C	language	programming,	there	are	some	words	that	you	cannot	use	at	all	whether
as	constants,	as	variables,	or	as	identifier	names.	They	are	said	to	be	reserved

keywords.

Reserved	keywords	in	C	include	auto,	else,	long,	switch,	break,	enum,	register,
typedef,		case,	char,	extern,	float,	return,	short,	union,	unsigned,	const,	continue,	for,
goto,	signed,	sizeof,	volatile,	default,	do,	int,	if,	struct,	static,	packed,	while	and
double.

Use	of	White	Space	in	C

If	there	is	a	line	that	is	entirely	blank,	the	compiler	automatically	ignores	it.	Such	a
line	is	termed	white	space.	However,	white	spaces	are	not	restricted	to	blank	spaces
alone.	They	also	include	newline	characters	(e.g.	\n)	as	well	as	tabs	and	comments.

Does	a	white	space	accomplish	anything	in	the	C	programming	language?	Yes,	it
does.	It	shows	the	end	of	one	statement	element	and	marks	the	beginning	of	another.
In	short,	ordinarily	a	statement	is	made	up	of	different	parts,	each	carrying	some
meaning;	and	those	parts	combine	within	the	statement	to	convey	some	information.
For	that	information	to	be	understood	in	the	C	language,	and	with	precision,	you	need
to	input	your	text	in	a	way	that	the	compiler	will	identify	each	bit	for	what	it	is.

Example:

When	you	have	an	expression	like	int	main,	the	only	way	the	compiler	is	going	to
recognize	int	and	main	correctly	is	by	having	some	whitespace	character	separating
them.	In	such	a	case,	space	is	the	most	commonly	used.	However,	there	are	situations
where	you	are	at	liberty	to	either	use	whitespace	or	leave	it	out	altogether.

Example:

In	the	statement,	dessert=cream	+	candy;	//get	the	entire	dessert,	you	can	include
some	space	between	dessert	and	the	equals	sign	or	leave	it	out	altogether.	Likewise,
you	can	put	space	between	the	equals	sign	and	cream	or	leave	it	out.	In	such
instances,	you	would	be	expected	to	use	your	discretion	in	a	manner	to	enhance
readability.	Otherwise,	whether	you	use	the	whitespace	or	not	will	not	affect	the	way
the	compiler	picks	that	part	of	the	statement.
	

Types	Of	Data	In	C

Why	is	type	important	when	it	comes	to	a	programming	language?	Well,	there	are
different	reasons,	including	the	storage	space	some	types	occupy	on	your	machine	as
opposed	to	others.	In	the	C	programming	language,	there	are	data	types	that	represent
variables	whereas	others	are	used	to	declare	functions.	The	type	of	data	does	not	just
determine	storage	space	but	also	the	manner	in	which	its	bit	pattern	is	understood
during	processing.

Here	are	the	main	data	types	in	C:

(1)	The	basic

The	basic	data	type	in	C	is	also	referred	to	as	the	primary	data	type.		It	includes	the
arithmetic	type,	which	is	further	categorized	as	integer,	abbreviated	as	int;	floating,

usually	represented	as	float;	and	character,	usually	represented	by	char	and	sometimes
void.	When	void	is	specified,	it	means	that	no	value	is	being	returned	or	reflected;	and
as	for	the	integer,	they	represent	variables.

	

Here	is	a	simple	table	to	demonstrate	how	the	basic	data	type	is	categorized:

	

Basic/Primary	Type	of	Data

Character Integer Float Void

	 signed		 unsigned 	 	

Char Int int float 	

signed	char short	int short	int double 	

unsigned	char long	int long	int long	double 	

	

Note	that	the	integer	data	type	stores	whole	numbers.	In	this	regard,	taking	a	16-bit
computer	as	an	example,	the	signed	int	takes	up	two	bytes;	the	unsigned	int	takes	up	two
bytes;	the	signed	short	int	takes	up	one	byte;	while	the	signed	and	unsigned	long	int	take
up	space	of	four	bytes	each.

	

When	it	comes	to	the	float	type	of	data,	plain	float	takes	up	space	of	four	bytes;	the
double	takes	up	eight	bytes;	while	the	long	double	takes	up	ten	bytes.

	

And	as	for	the	character	type	of	data,	which	basically	stores	the	value	of	characters,
signed	char	takes	up	space	of	just	a	byte,	and	the	same	case	applies	to	the	unsigned	char.

The	void	type	of	data	ordinarily	represents	functions	that	produce	no	value	whatsoever.
Sometimes	these	are	functions	that	do	not	accept	any	parameters.

	

As	has	been	noted,	functions	in	the	C	language	whose	return	type	is	void	are	those
returning	no	value.	Here	is	how	they	look	like:

void	exit	(int	status)

Again,	there	are	those	functions	in	C	that	accept	no	parameter.	However,	a	function	not
accepting	parameters	can,	nevertheless,	accept	void	as	in	the	example	below:

	

																																										int	rand(void)

	

(2)	Derived

	

Under	the	derived	type	of	data	are	functions;	various	data	structures;	and	also	pointers.

	

What	could	pointers	be?

Well,	a	pointer	happens	to	be	a	variable	that	has	an	address	of	another	variable.	It	gives
direction	as	to	where	that	other	variable	is,	helping	to	recall	the	contents	of	that	other
variable.	You	need	to	realize	that	pointers	have	nothing	to	do	with	object	type.	Take	the
following	function,	for	example:

																																									

void	*malloc(size_t	size)

	

This	function,	which	obviously	has	a	pointer	to	no	other	value	but	void,	is	one	that	can
always	be	casted	to	any	type	of	data	you	have.	Remember	to	always	declare	your	pointer
before	beginning	to	use	it	for	storage	of	whatever	variable	address	you	want.	Below	is	a
demonstration	of	the	general	form	you	use	for	pointer	declaration:

																																										type	*var-name;

Type,	in	this	case,	stands	for	the	base	type	of	your	pointer,	which	needs	to	be	a	valid
data	type	used	in	the	C	language.	var-name	is	the	pointer	variable’s	name.	You	need	to
know	that	although	the	asterisk	used	is	the	same	one	you	ordinarily	use	for
multiplication,	within	the	C	language	you	use	it	to	mark	the	designation	of	the	variable
as	pointer.

	

Real	examples	of	pointer	declarations:

int *ip; /*pointer	to	an	integer*/

double *dp; /*pointer	to	a	double*/

float *fp; /*pointer	to	a	float*/

char *ch; /*pointer	to	a	character*/

	

Note	that	whether	you	are	entering	pointer	values	that	are	integers	or	character;	float
or	even	double;	what	cuts	across	them	all	is	the	requirement	that	the	value	be	one

long	number	that	is	hexadecimal,	and	which	is	a	representation	of	the	memory
address.	Otherwise	the	pointers	only	differ	in	the	specific	constant	or	variable	data
type	that	each	of	them	points	to.

	

When	you	are	doing	your	variable	declaration,	if	you	have	no	particular	address	to
assign	to	the	pointer	variable,	assign	it	a	null	value	so	it	becomes	a	NULL	pointer.
You	can	refer	to	it	as	a	pointer	with	zero	value.	In	many	operating	systems	(OS),
programs	will	not	access	address	0/zero;	the	OS	simply	reserves	it.	

	

Pertinent	Details	Pertaining	To	C

	

Pointers	are	of	fundamental	importance	in	the	C	programming	language,	the	reason
every	programmer	needs	to	be	aware	of	its	basic	concepts.	Luckily,	they	are
concepts	that	are	easy	to	learn	and	to	remember.

	

Below	are	the	pointer	concepts	and	their	explanations:

	

1.					The	pointer
arithmetic

The	C	language	has	a	choice	of	4	arithmetic
operators	to	choose	from	when	creating	a	pointer;
namely,	++;	—;	+	and	-

2.					Pointer	arrays

An	array	does	not	hold	a	singular	pointer	but	a
number	of	them.

3.					Pointer	to
pointer

The	C	language	enables	you	to	create	a	pointer	on
another	pointer

4.					Passing	a	pointer
to	a	particular
function

You	do	this	by	declaring	your	chosen	function
parameter	in	pointer	type.	Any	function	accepting	a
pointer	also	accepts	an	array	of	pointers.

5.					Returning
pointer	from
function

This	involves	allowing	a	function	to	actually	return
a	pointer	to	a	variable	that	is	local,	static,	and	one
with	memory	that	is	dynamically	allocated.

	

Clarification	of	Pointer	to	Pointer

This	is	a	case	of	having	pointers	in	a	form	of	chain.	Ordinarily	what	you	have	is	a
pointer	with	a	variable	address.	However,	with	a	case	of	pointer	to	pointer,	the	pointer

you	create	first	has	an	address	of	your	second	pointer.	That	second	pointer,	in	turn,
has	the	location	where	the	actual	value	you	want	is.	You	are	required	to	always
declare	when	you	have	a	pointer	to	pointer	variable.	And	how	do	you	do	that?	Well,
you	add	one	more	asterisk	next	to	the	usual	one	that	you	place	before	the	pointer
name.	Then	you	end	up	with	something	like	this:

																																																																																																																													
														int	**var;

	

Still,	what,	exactly,	are	Variables?

	

Variables	come	up	often	in	conversation,	and	they	appear	in	many	functions,	not	least
in	the	C	language.	When	it	comes	to	the	C	programming	language,	a	variable	is
simply	a	representative	of	storage	area.	It	is	the	place	where	programs	in	C	perform
their	manipulations.	Practically,	you	can	use	variables	to	store	various	data	value.
Variables	are	different	from	constants	because	as	you	execute	your	program	in	the	C
language,	you	can	alter	your	variables,	something	you	cannot	do	with	constants.
During	programming,	you	may	give	your	variables	names	that	have	ordinary
meaning,	like	height	or	weight;	age;	average;	and	such.

	

It	is	important	to	note	that	variables	are	of	specific	types	and	the	type	of	each
determines	its	memory	size	as	well	as	its	layout.	It	also	determines	the	value	range
that	can	be	accommodated	within	the	memory.	The	variable	type	also	determines	the
particular	operations	that	you	can	apply	to	the	variable	in	question.

	

How	do	variables	look	like?	Well,	they	come	in	form	of	digits;	also	letters,	as	well	as
the	underscore.		And	you	need	to	declare	them	before	you	begin	using	your	program
for	two	major	reasons:

a)				So	that	the	compiler	can	recognize	the	name	of	the	variable

b)				So	that	it	can	be	aptly	categorized	–	given	its	appropriate	data	type

	

Also	when	defining	a	variable	in	the	C	language,	you	need	to	follow	some	stringent
rules.

	

Variable	related	rules:

Provide	a	variable	name	that	does	not	exceed	eight	characters
The	name	you	provide	should	not	have	a	digit	at	the	beginning
Do	not	include	blanks	or	any	space	within	your	chosen	variable	name

Use	digits	or	alphabets;	and	even	special	symbols	such	as	underscore	(_)	as	you
wish	in	creating	a	variable	name.
You	cannot	use	keywords	to	represent	variable	names

In	fact,	whenever	you	are	declaring	names	of	variables	or	for	functions,	or	you	are
declaring	your	constants,	be	keen	not	to	include	a	C	keyword.

Incidentally,	what	are	keywords	within	the	C	programming	language?

The	C	keywords	are	grouped	as	auto,	double,	int	and	struct.	Normally,	the	compiler
will	do	the	categorizations	of	the	keywords,	the	keywords	essentially	making	part	of
the	C	syntax.	C	keywords	are	actually	pre-defined	and	so	you	just	need	to	know
which	ones	they	are.

Take	the	example:	int	cash

Cash	happens	to	be	the	variable,	and	its	type	is	integer.	The	keyword	indicating	cash
then	is	int.

	

What	You	Need	To	Know	About	Keywords	In	C:

1							In	C,	keywords	are	also	referred	to	as	reserved	words.

2							The	keywords	used	in	C	are	32	in	number.

3							You	need	to	learn	the	specific	C	keywords	so	that	you	do	not	use	them	as
variables	in	functions.

4							When	using	a	C	keyword,	you	are	required	to	assume	the	meaning	the
compiler	has	provided	or	defined	for	that	keyword.

Here	are	the	32	keywords	used	in	C	programming:

auto

The	C	keywords	under	auto	are	specifically	break;	case;	char;	const;	continue;
default;	as	well	as	do.	These	plus	auto	make	a	total	of	eight.

double

Under	double	are	the	keywords	else;	enum;	extern;	float;	for;	goto	as	well	as	if.
These	plus	double	make	a	total	of	eight.

int

The	C	keywords	under	int	are	long;	register;	return;	short;	signed;	sizeof;	as	well	as
static.	These	ones	plus	int	make	a	total	of	eight.

struct

The	C	keywords	under	struct	are	specifically	switch;	typedef;	union;	unsigned;	void;
volatile;	as	well	as	while.	These	keywords	plus	struct	add	up	to	eight.
	

	

Chapter	4:	C	Constants	and	Literals
In	the	C	programming	language,	the	term	literal	can	also	be	used	in	place	of	constant.
Now,	what,	exactly,	is	a	constant	in	the	context	of	C	programming?	Well,	it	is	the
term	used	for	a	fixed	value	in	the	data	being	entered	in	the	program,	which	the
program	cannot	alter	in	the	course	of	execution.	Constants	come	in	all	data	types	–
floating,	character,	integer	and	even	string.	You	can	also	find	constants	of
enumeration.

	

When	it	comes	to	actual	C	programming,	you	use	constants	in	the	same	way	you	use
regular	variables;	only	that	with	constants	you	would	not	be	able	to	modify	their
values	after	you	have	defined	them.

What	would	happen	if	you	tried	to	alter	the	value	of	a	constant?	Simple:	The	program
will	return	an	error	message.	After	clarifying	the	nature	of	constants,	let	us	go	through
some	basic	rules	that	will	help	in	using	them.

Rules	to	observe	in	constructing	constants	in	C:

(1)	Integer	Constants

a.					Every	integer	constant	needs	to	have	a	digit

b.					No	integer	constant	should	have	a	decimal

c.					It	is	alright	for	an	integer	constant	to	be	either	positive	or	even
negative

d.					You	must	not	add	a	comma	or	even	a	blank	anywhere	within	your
integer	constant

e.					Whenever	there	is	no	sign	preceding	an	integer	constant,	the
assumption	is	that	the	constant	is	positive

f.							For	the	sake	of	processing	in	your	computer	program,	when	you	are
selecting	your	integer	constants,	the	range	you	have	to	work	with	is	from
-32768	to	32767.

(2)	C	language	real	constants

Incidentally,	these	are	the	same	ones	we	referred	to	earlier	as	floating	point
constants.

a.					Each	of	them	also	needs	at	least	a	single	digit

b.					It	is	also	necessary	that	it	contains	a	decimal

c.					Just	like	with	integer	constants,	it	is	acceptable	as	positive	or
negative

d.					Here	too,	in	case	you	do	not	put	a	sign	before	the	constant,	it	is
interpreted	as	being	positive

e.					And	as	for	commas	and	blanks,	here	too	they	are	not	acceptable.

(3)	Character	constants

1.	 This	one	comes	in	singular:	one	alphabet,	one	digit,	or	even	one	special
symbol.	In	short,	its	length	is	always	one	character.

2.	 A	character	constant	is	enclosed	within	a	single	quote

(4)	String	Constants

1.	 A	string	constant	needs	to	be	enclosed	in	a	double	quote.

(5)	Backlash	Characters

1.	 In	the	C	programming	language,	you	use	a	backlash	character	when	it
carries	a	special	meaning

2.	 You	also	use	the	backlash	here	to	denote	the	character’s	special	function

	

Let	us	analyze	the	various	literals	that	exist	in	C.

	

The	Integer	Literals

These	ones	are	usually	decimals,	octals,	and	sometimes	hexadecimals.	They	bear	a
prefix	that	actually	defines	the	base.	For	example,	Ox	(OX)	marking	a	hexadecimal,	0
indicating	octal,	and	of	course	nil	marking	a	decimal.	

	

You	can	also	have	a	suffix	on	an	integer	literal,	for	example,	U	combined	with	L	to
denote	unsigned	and	long,	in	that	respective	order.	You	also	need	to	appreciate	that
when	it	comes	to	the	suffix,	both	the	upper	and	lower	cases	are	acceptable.

Here	below	are	some	great	examples	of	literal	integers:

078 /*Illegal:	8	is	not	an	octal	digit*/

215u /*Legal*//*

032UU /*	Illegal:	cannot	repeat	a	suffix*/

212 /*Legal*/

OxFeeL Legal*/

	

Additional	examples	of	varied	integer	literals:

85 /*	decimal	*/

30 /*	int	*/

30u /*	unsigned	int	*/

0213 /*	octal	*/

Ox4b /*	hexadecimal	*/

30l /*	long	*/

30ul /*	unsigned	long	*/

	

The	Floating	Point	Literals

Floating	point	literals	have	combinations	of	parts	–	some	integers,	others	decimal,
some	fractions,	and	still	some	exponents.	When	it	comes	to	representation,	these
literals	are	shown	in	decimal;	otherwise	exponential.

In	times	when	your	literals	are	coming	in	decimals,	you	need	to	remember	the
decimal	point;	and	sometimes	both	the	decimal	point	and	the	exponent.	Then	when
the	literals	are	coming	in	exponential	form,	you	need	to	factor	in	the	integer;	fraction
part;	and	sometimes	you	add	the	part	that	is	fraction	to	that	integer.	Note	that	your
signed	exponent	needs	to	be	preceded	by	an	e	or	E.	

Here	is	some	demonstration	of	floating	point	literals:

510E /*	Illegal:	incomplete	exponent	*/

3.14159 /*	Legal*/

314159E-5L /*	Legal*/

.e55 /*	Illegal:	missing	integer	or	fraction	*/

210f /*	Illegal:	no	decimal	or	exponent	*/

	

The	Character	Constants

Character	literals	come	in	single	quotes,	for	example,	‘x’.	The	character	literal	is	then
stored	as	a	char	type;	just	being	one	simple	variable.	You	need	to	note	that	although	it
is	fine	to	have	simple	character	literals,	sometimes	you	are	called	upon	to	create	an
escape	sequence.

Example	of	such	an	escape	sequence:

	

‘\t’),	or	just	a	universal	character	like	‘\u02C0’).

	

Something	else	worth	noting	is	that	you	can	vary	the	meaning	of	a	character	constant
just	by	preceding	it	with	a	backlash.	Good	examples	are	the	newline,	which	is
represented	by	\n;	and	the	tab,	which	is	represented	by	\t.	In	short,	you	can	have
character	literals	being	plain	characters,	as	in	x;	escape	sequence,	as	in	\t;	and	even	as
universal	character,	as	in	\u02CO.	

	

Further	Demonstrations	of	Escape	Sequence	Codes:

Escape	Sequence
Codes

Meaning

\ \character

\’ ‘character

\” “character

\? ?character

\a Alert	(or	bell)

\b Backspace

\f Form	feed

\n Newline

\r Carriage	return

\t Horizontal	tab

\v Vertical	tab

\xhh	… Hexadecimal	number	of	one	or	more
digits

	

Example	of	‘Hello,	learners’	in	Escape	Sequence

#include	<stdio.h>

int	main()

{printf(“Hello\tlearners\n\n”);	return	0}

	

The	escape	sequence	code	after	execution

After	the	sequence	code	above	has	been	compiled	and	also	executed,	the	result	you
get	is	as	follows:

Hello				learners

	

The	String	Literal

As	for	the	string	literals	or	string	constants,	you	need	to	know	that	they	are	enclosed
within	quotes,	as	in	(“”).	That	string	has	characters	that	are	plain,	escape	sequence	or
universal.	Something	else	worth	noting	is	that	the	characters	in	string	literals	never
come	in	singular;	always	as	two	or	more.

Ordinarily,	you	begin	your	string	literal	with	a	backlash	(\);	and	then	you	follow	it	up
with	characters	that	will	determine	the	ultimate	interpretation	of	your	escape
sequence.	Just	for	example,	if	you	want	your	computer	to	bring	out	newline,	what	you
type	as	your	escape	sequence	is	\n.

As	for	the	universal	characters,	they	are	those	that	represent	Unicode	code	points
within	the	string	literal.	These	are	the	ones	you	write	like	\uxxxx	or	\Uxxxxxxxx.	X	in
this	context	represents	one	hex	digit.	What	we	are	essentially	saying	is	that	you	have
the	escape	sequence,	\uxxxx	playing	the	role	of	marking	or	representing	xxxx	as	the
code	point.

Although	string	literals	are	sometimes	long,	you	have	an	opportunity	to	break	them
by	the	use	of	white	spaces.	Here	below	is	an	example	of	three	ways	you	can	break
one	literal	string,	so	that	you	end	up	with	the	same	string	in	three	identical	forms:

“hello,	learners” “hello,	\	learners” “hello,	“	“l”	“earners”

	

Manner	of	Defining	Constants

When	it	comes	to	defining	constants	for	use	in	the	C	language,	this	is	done	in	two
main	ways:

(i)				By	a	pre-processor:	#define

(ii)	By	a	keyword:	const

Pre-processing	is	the	first	thing	that	happens	compilation	is	going	on	in	the	C
program.	It	is	a	feature	strictly	unique	to	C	language	programming	compilers.	It	is
also	important	to	note	that	every	directive	being	undertaken	by	the	pre-processor
begins	with	#.	By	directive	here	we	mean	command.

The	benefits	that	come	with	the	C	pre-processor	include:

Easy	process	of	developing	programs
It	is	relatively	easy	to	read
It	is	similarly	easy	to	modify
Its	C	code	is	easy	to	transport	to	varying	machine	architectures.

	

	

Chapter	5:	C	Storage	Classes
What	does	a	storage	class	got	to	do	with	the	C	language?	Storage	classes	in	C	actually
play	a	big	role	in	the	name	declaration	syntax.	A	storage	class	indicates	the	scope	the
variables	cover	and	also	the	duration	they	are	to	remain	stored	–	what	you	can	call
their	lifetime.	It	also	controls	its	linkage.	In	the	C	programming	language,	storage
classes	are	four.

Here	are	C’s	storage	classes:

1.	 Auto

This	is	C’s	default	storage	class	for	every	local	variable.	Its	storage	duration	is
automatic	and	it	operates	within	functions.

2.	 Register

The	term	register	is	used	here	because	the	storage	class	specifier	prompts	the
compiler	to	put	the	object	in	question	within	the	register	in	the	processor.	As	for
storage,	the	duration	here	is	also	automatic.	The	uniqueness	with	the	register	storage
class	is	that	it	helps	identify	any	local	variable	that	needs	to	be	stored	within	the
register	as	opposed	to	being	held	within	RAM	(Random	Access	Memory).	This
automatically	means	that	the	size	of	your	variable	cannot	exceed	that	of	the	register.
Ordinarily	that	size	which	is	meant	to	fit	the	register	is	only	a	single	word;	without
adding	something	like	&	as	there	is	no	memory	location	for	it.

3.	 Static

This	is	the	same	one	sometimes	referred	to	as	thread	storage.	Its	storage	is	static	and
has	internal	linkage.	What	this	static	storage	class	does	is	give	indication	to	the
compiler	that	the	local	variable	needs	to	be	spared	as	long	as	the	program	lasts.	This
is	as	opposed	to	it	being	destroying	it	when	it	gets	out	of	scope.	Owing	to	this	manner
of	functioning,	the	variables	retain	their	exact	values	in	between	function	calls.

4.	 Extern

This	one	is	similar	to	static	storage,	with	the	difference	being	in	its	linkage,	which
happens	to	be	external.	It	is	the	one	that	enables	a	global	variable	to	be	visible	in
every	program	file.	However,	you	cannot	initialize	the	variable	if	it	is	‘extern’	but	it
will	direct	you	to	the	relevant	storage	location.	This	happens	usually	in	situations
where	you	have	created	multiple	files.	What	happens	is	that	you	define	a	global
function	or	a	global	variable,	and	when	checking	out	another	file,	you	will	see
‘extern’	being	used	to	give	direction	or	reference	to	the	variable	already	defined;	or
even	function.

What	is	linkage	in	C?	It	is	simply	a	name	denoting	object,	value,	reference,	template,
function,	namespace,	or	even	type.

Operators	in	C

In	the	C	language,	an	operator	is	that	symbol	–	and	they	are	a	number	of	them	–	that

directs	the	compiler	to	do	specific	functions	of	a	mathematical	or	logical	nature.
Some	of	C’s	operators	are	in-built.

Categories	Of	Operators	In	C

	

(1)	Arithmetic

These	are	specific	and	so	it	is	easy	to	learn	and	remember	them.	We	shall	list	them
here	below	and	demonstrate	how	you	apply	each	of	them.	For	our	demonstration,	we
shall	assume	that	variable	A	has	the	value	of	20,	while	variable	B	has	the	value	of	40.

Operator Operator’s	Function Practical	Example

+ To	put	together	two	operands A	+	B	=	60

- Reduces	the	1st	operand	by	the
value	of	the	2nd	one.

A	–	B	=	-20

* Multiplies	the	1st	and	2nd
operands

A	*	B	=	800

/ Divides	the	numerator	by	the
denominator

B	/	A	=	2

% One	operator	divided	by	the
other	and	the	remainder	is	the
result

B	%	A	=	0

++ Role	of	increasing	integer	by	1. A++	=	21

— Role	of	reducing	integer	by	1. A—	=	19

	

(2)	Relational	Operators

These	ones	help	you	to	determine	the	block	to	follow,	once	you	compare	the	values
between	two	variables	already	in	storage.

Here	are	further	examples	using	the	same	two	variables,	A	=	20	and	B	=	40.

Operator Operator’s	Function Practical	Example

== Verifies	if	two	operands	have	equal
value;	if	not,	condition	is	returned	as
not	true.

(A	==B)	is	not	true

!= Verifies	if	two	operands	have	equal
value;	if	not,	condition	is	returned	as
true.

(A	!=B)	is	true

> Evaluates	if	left	operand	has	greater
value	than	right	operand;	if	so,
condition	is	returned	as	true,
otherwise	untrue

(A	>	B)	is	not	true

< Evaluates	if	left	operand	has	less
value	than	the	right	one;	if	so,
condition	is	returned	as	true

(A	<	B)	is	true

>= Evaluates	if	left	operand	has	value
that	is	greater	or	equal	to	the	right
operand;	if	so,	condition	is	returned
as	true,	otherwise,	not	true

(A	>=	B)	is	not	true

<= Evaluates	if	left	operand	has	value
that	is	less	or	equal	to	that	of	the
right	operand;	if	so,	condition	is
returned	as	true,	otherwise,	false

(A	<=	B)	is	true

	

(1)	Logical	Operators

There	are	basically	three	logical	operators	that	the	C	programming	language	supports.
Assuming	that	A	is	one	of	your	variables	and	its	value	is	1;	and	B	is	the	other	one	of
your	variables	and	its	value	is	0;	this	is	how	the	program	works:

Operator Working	Explanation Practical	Example

&& This	one	is	named	the	Logical	AND
Operator.	If	the	1st	as	well	as	the	2nd
operands	happen	to	be	non-zero,	you	will
have	the	condition	returned	as	true

(A	&&	B)	is	false

|| This	one	is	named	the	Logical	OR
Operator.	It	means	that	if	either	of	your
two	operands	happens	to	be	non-zero,	you
will	have	the	condition	returned	as	true.	

(A	||	B)	is	true

	

(2)	Bitwise	Operators

These	operators	work	by	manipulating	data	right	at	the	bit	level.	They	also	shift	bits
from	the	right	position	to	the	left.	Note	that	bitwise	operators	do	not	work	with	C’s
float	variables	or	the	double	float	variables.

Let	us	first	observe	the	various	roles	of	the	different	bitwise	operators

Operator What	Operator	Stands	For

& Bitwise	AND

| Bitwise	OR

^ Bitwise	exclusive	OR

<< Left	shift

>> Right	shift

	

Here	below	is	a	table	showing	the	workings	of	three	bitwise	operators:	&,	|	and	^:

a b a	&	b a	|	b a	^	b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

	

What	is	essentially	happening	in	our	table	above	is	that	the	left	operand	is	specifying	the
value	that	needs	to	be	shifted;	while	the	right	operand	is	specifying	the	actual	number	of
positions	those	bits	within	the	value	need	to	be	shifted.	And	that	is	how	it	generally	works
with	bitwise	operators.

When	it	comes	to	the	bitwise	exclusive	OR,	otherwise	abbreviated	as	XOR,	what	happens
is	that	the	exclusive	OR	operation	considers	two	inputs	and	returns	1	(one)	if	either	of
those	inputs	is	1	(one).	In	short,	it	cannot	return	1	if	both	of	the	inputs	are	1;	or	if	both	of
them	are	0.	If	it	so	happens	that	you	have	both	inputs	as	1,	or	you	have	both	of	them	as	0,
then,	the	operation	will	return	0.

(3)	Assignment	Operators

The	C	language	supports	a	number	of	assignment	operators.	Below	are	the	assignment
operators	that	C	supports	and	how	they	work:

Operator What	The	Operator	Does Example

= Allocates	values	from	operands	on
the	right	to	those	on	the	left

m	=	n

+= Adds	the	value	of	the	right	operand	to
that	of	the	left	operand;	then	assigns
the	resultant	value	to	the	left	operand

m	+=	n	means	that	m	=	m	+	n

-= Here	it	subtracts	the	value	of	the	right
operand	from	that	of	the	left	operand;
then	assigns	the	resultant	value	to	the
left	operand

m	-=	n	means	that	m	=	m	-	n

*= The	left	operand	gets	multiplied	by
the	right	operand;	and	the	product	is
then	assigned	to	the	left	operand

m	*=	n	means	that	m	=	m	*	n

/= The	value	of	the	left	operand	is
divided	by	that	of	the	right	one;	then
the	result	is	assigned	to	the	left
operand

m	/=	n	means	that	m	=	m/n

%= Here	the	operator	takes	the	left	and
right	operands	and	uses	them	in
modulus	calculation;	then	gets	the
result	assigned	to	the	left	operand.

m	%=	n	means	that	m	=	m	%
n

(4)	Conditional	Operator

This	operator	also	goes	by	the	term	ternary	operator.	Conditional	operators	play	the	role	of
evaluating	conditional	expressions.	See	illustration	below:

Operator What	The	Operator	Does Example

?: An	expression	is	provided;	and	the	operator
represents	the	condition	that	if	expression	1	is
true,	value	1	is	assumed;	otherwise	value	2	is
taken.

If	condition	true	?
then	value	y,
otherwise,	value	z

(5)	Special	Operators

Each	special	operator	is	different	from	the	others,	each	performing	its	unique	function.
Here	below	are	the	main	special	operators	in	the	C	programming	language:

Operator Operator’s	Role Practical	Example

& Locates	the	variable’s	address &	y	returns	y’s	actual
address

* Acts	as	actual	pointer	to	the	variable *y	is	the	actual	pointer	to
variable	y

sizeof Provides	the	variable	size sizeof	(y)	returns	variable	y’s
size

Precedence	Of	Operators	In	The	C	Programming	Language

In	the	use	of	C	programming	language,	whenever	terms	are	grouped	in	an	expression,
each	of	those	terms	is	evaluated.	As	a	result,	some	are	given	precedence	over	others
depending	on	the	operators	therein.	There	are,	obviously	then,	those	operators	that	are
accorded	higher	precedence	over	others.	Just	to	cite	a	simple	example,	the	operator	of
multiplication	takes	higher	precedence	over	that	of	addition.

Let	us	try	another	example:

Given	y	=	5+3*4,	what	would	you	give	as	the	answer?

If	you	have	no	idea	about	precedence,	you	might	be	tempted	to	go	the	linear	way,	adding	5
to	3	and	then	multiplying	their	sum	by	4;	in	which	case	you	would	have	32.	However,	this
is	not	correct	in	C	programming	where	the	multiplication	operator	is	higher	in	precedence
than	the	addition	operator.	So	the	correct	way	is	to	multiply	3	by	4,	whereby	you	will	get
their	product	as	12;	then	add	5	to	12	and	you	get	17.	That	is	the	same	way	you	are
expected	to	treat	different	operators	within	the	same	expression	–	according	to	the
precedence	each	has	in	C.

Below	is	a	table	showing	the	precedence	of	various	operators	in	descending	order:

1.	 Operators	taking	the	highest	precedence:	number	one	overall:
1.	 A	suffix	and	postfix,	being	increment	as	well	as	decrement	;	from	left	to

right,	that	is,	++—
2.	 A	function	call,	which	is,	()
3.	 An	operator	of	array	subscripting,	which	is,	[]
4.	 An	operator	of	structure,	as	well	as	union	member	access,	which	is.
5.	 An	operator	of	structure	as	well	as	union	member	via	pointer,	and	that	is,	->
6.	 The	compound	literal	or	C99,	which	is,	(type){list}

All	the	above	operators	have	left	to	right	associativity;	or	you	can	call	it	fixity.	It	is
indication	of	how	you	are	expected	to	understand	precedence	in	each	case	even
when	no	parenthesis	is	used.

2.	 Operators	taking	the	second	position	in	precedence
1.	 A	prefix	increment	as	well	as	decrement,	both	denoted	by	++—

2.	 Unary	plus	as	well	as	minus,	both	denoted	by	+-
3.	 The	logical	NOT	as	well	as	the	bitwise	NOT,	both	denoted	by	!~
4.	 The	type	cast	as	denoted	by	(type)
5.	 Indirection,	or	otherwise,	dereference,	represented	by	*
6.	 Address-of,	represented	by	operator,	&
7.	 The	size	as	denoted	by	sizeof
8.	 Requiring	alignment,	or	otherwise,	C11;	and	that	is	represented	by	alignof

The	associativity	of	this	category	of	operators	is	right	to	left.

3.	 These	are	the	operators	coming	third	in	precedence

They	include	operators	of	multiplication,	of	division,	and	any	remainder;	and	they	are
considered	from	left	to	the	right.	They	are	denoted	by	*/%	and	have	associativity	of
left	to	right.

4.	 Here	are	operators	taking	fourth	position	in	precedence.	They	comprise	those	of
addition	and	also	subtraction,	as	denoted	by	+-.	Here	too,	associativity	is	from	left
to	right.

5.	 The	operators	taking	precedence	in	this	fifth	position	have	associativity	of	left	to
right.	They	include	the	bitwise	left	shift	as	well	as	the	right	shift.	The	operators
themselves	are	<<>>

6.	 The	operators	taking	this	sixth	position	in	precedence	include	relational	operators,
which	are:

1.	 <	as	well	as	<=
2.	 >	as	well	as	>=

So,	essentially,	the	operators	in	play	are	<<=	and	>>=	with	associativity	of	left	to
right.	

7.	 Seventh	in	order	of	precedence	are	other	relational	operators.

They	are	specifically	==!=	and	their	associativity	is	also	from	left	to	right.

8.	 Eighth	in	order	of	precedence	is	the	bitwise	AND,	simply	denoted	by	&.

This,	too,	has	associativity	of	left	to	right.

9.	 Ninth	in	precedence	is	the	exclusive	bitwise	operator	OR.

This	is	the	one	denoted	by	the	operator	^;	and	it	has	left	to	right	associativity	as
well.

10.		Tenth	in	order	of	precedence	is	bitwise	OR,	which	you	can	term	the	inclusive
OR.	It	has	left	to	right	associativity	also,	and	it	is	the	one	denoted	by	the	operator,	|
11.		Eleventh	in	line	is	the	Logical	AND.	This	one	also	has	left	to	right
associativity.	It	is	denoted	by	&&.
12.		The	logical	OR	follows	in	order	of	precedence	in	twelfth	position.	Its

associativity	is	also	left	to	right.	This	operator	is	denoted	by	||
13.		This	operator	that	is	thirteenth	in	precedence	is	the	ternary	conditional.	It	is
denoted	by	[note	1]	and	its	associativity	is	right	to	left.
14.		The	operators	that	take	fourteenth	position	happen	to	be	simple	assignment

1.	 This	is	an	assignment	of	sum	as	well	as	difference	and	it	is	denoted	by	+=-=
2.	 Another	one	is	assignment	involving	product	and	quotient;	as	well	as

remainder.	It	is	denoted	by	*=/=%=
3.	 In,	this	category	too	is	bitwise	assignment,	which	happens	to	comprise	the

left	as	well	the	right	shift.	These	are	denoted	by	<<	=	>>
4.	 There	is	also	another	bitwise	assignment,	and	that	involves	there	operators,

which	are	AND,	also	XOR,	and	lastly	OR;	denoted	as	&=^=|=
15.		The	last	one	in	line,	ranking	15th,	is	the	comma,	and	its	associativity	is	from
left	to	right.	It	is	denoted	by	,

	

Chapter	6:	Making	Decisions	In	C
What	does	decision	making	entail	within	the	context	of	C	language	programming?
Well,	you	need	to	know	the	best	order	to	execute	certain	expressions	or	statements
provided;	or	those	you	have	personally	designed.		There	is	a	way	you	can	lay	out	your
statements	and	your	program	fails	to	return	any	usable	results;	possibly	returning
errors.	Some	sets	of	statements	actually	require	repeating	before	they	can	meet	the
conditions	needed.	As	a	programmer,	the	reason	you	go	to	these	lengths	is	to	be	able
to	make	pertinent	decisions	relating	to	your	programming.	The	true	or	false	results
that	your	program	returns	are	very	important	because	they	come	about	through	a
thorough	process	of	evaluation.	Essentially	what	C	does	is	help	you	weigh	different
conditions	against	one	another,	in	a	bid	to	solve	one	or	more	problems	that	you	are
faced	with.	

	

As	a	programmer	using	C,	you	are	expected	to	be	able	to	specify	one	condition,	or
even	more,	which	the	program	will	evaluate	and	test.	These	are	handled	together	with
a	given	statement	or	a	select	set	of	statements,	and	they	are	then	executed	if	the
condition	or	conditions	you	specified	prove	to	be	true.	Otherwise,	if	the	condition	or
conditions	do	not	prove	to	be	true,	meaning	they	are	proven	as	false,	the	alternative
statements	may	be	executed.

	

The	C	language	handles	decision	making	in	a	simple	but	organized	manner.	Here	are
statements	that	C	supports	for	the	sake	of	decision-making:

(1)	The	if-statement

(2)	The	switch	statement

(3)	The	conditional	operator	statement

(4)	The	goto	statement

How	The	if-Statement	Works:

This	one	comes	in	four	different	forms	as	shown	below:

1.	 The	simple	one

This	one	simply	mentions	one	condition	or	supposition	and	states	that	something
specific	is	going	to	happen	if	that	supposition	holds	true.	However,	if	that	supposition
does	not	hold	true,	the	suggested	thing	does	not	occur;	rather	the	situation	becomes
different.	In	programming,	and	in	this	case	C,	you	need	to	put	that	situation	in	form	of
a	statement,	so	that	your	program	can	evaluate	the	condition	and	execute	commands
appropriately.

Here	is	how	you	express	it:

If	(your	chosen	expression)	{this	inside	statement;}	this	outside	statement

	

2.	 If…else

In	this	statement,	you	have	two	specified	possibilities,	so	that	if	your	expression	does
hold	true,	your	first	statement	works;	or	else,	which	essentially	means	your	expression
failing	to	hold	true,	your	second	statement	works.	You	could	also	have	a	situation
where,	should	the	condition	be	true,	the	program	executes	a	set	of	statements;	and	if
the	condition	is	not	true,	the	program	executes	a	different	set	of	statements.

Here	is	how	you	express	it	in	readiness	for	execution:

If	(your	chosen	expression)	{1st	statement;}	else	{2nd	statement	2}
If	(your	chosen	condition)	{1st	statement;	2nd	statement;}	else	{3rd	statement;
4th	statement}

	

3.	 If…else;	nested

This	one	is	very	near	like	if…else,	only	that	it	has	a	third	alternative	statement.	Here
is	a	situation	where	you	may	find	it	necessary	to	insert	an	if-statement	or	if…else
statement	right	within	another.

	

Here	is	how	you	express	a	nested	if:

	

If	(your	1st	condition)	{1st	statement	;)	else	_	if	(your	2nd	condition)	{2nd
statement	;}	else	3rd	statement.

	

4.	 Else…if	ladder

In	this	form	of	statement,	you	have	your	chosen	expression	tested	starting	from	the
upper	part	of	the	ladder	and	progressing	downwards,	and	in	the	process	trying	to
verify	the	condition	present.	Only	if	the	condition	is	found	as	expected	is	the	related
statement	executed.

Points	worth	Noting:

In	C,	values	that	are	non-zero	or	non-null	are	the	only	ones	that	can	hold
true.	So,	for	a	value	that	is	zero	or	even	null,	the	program	automatically	returns
results	as	false.
You	can	have	one	single	statement	within	the	if-statement	that	is	not

enclosed	in	curly	braces	–	{}

	

See	this	example:

	

Int	a	=	6

If	(a	>	5)

Printf	(“success”)

	

As	you	can	see,	no	curly	braces	have	been	used	in	the	above	example,	and	none
were	needed.	However,	if	the	situation	were	different	such	that	there	was	an
additional	statement	within	the	if-condition,	you	would	need	to	enclose	those
statements	within	curly	braces.

The	operators,	==	need	to	be	used	carefully	to	avoid	confusion	between	it
and	the	=	operator.	The	only	time	you	can	use	==	appropriately	within	an
expression	that	has	an	if-condition	is	if	you	are	making	a	comparison.
Otherwise	the	=	operator	in	such	an	environment	executes	an	assignment;	not	at
all	a	comparison.

Anything	you	enter	as	condition	in	an	if-statement	will	hold	true	if	it	is	not	a
nil/zero	(0)	value

	

Example:

if	(25)

																																																																																																																													
																																																																																																		Printf	(“hi”);

	

In	this	particular	example,	you	can	be	sure	to	see	hi	printed.

	

What	you	have	been	using	all	along	as	the	syntax	of	the	if-condition	is	the	Boolean
expression.	And	what,	exactly,	is	the	Boolean	expression?	Simple:	It	is	the	expression
you	use	in	programming	to	produce	a	Boolean	value	after	evaluation.	By	value	here
we	simply	mean	the	true	or	false	results	we	have	mentioned	elsewhere	in	the	book.	In
actual	fact,	these	two	alternatives	–	true	and	false	–	are	values	of	the	Boolean	data
type.	They	are	the	outcome	of	logic	when	working	with	Boolean	algebra.

And	what	would	we	say	Boolean	algebra	is?	Well,	it	is	simply	a	branch	of	algebra	that
deals	with	the	variables	of	truth;	denoting	true	and	false	in	terms	of	1	and	0
respectively,	as	the	case	may	be.	The	first	person	to	initiate	this	algebraic	system	that
deals	with	logic	mathematically	went	by	the	name	of	George	Boole;	the	reason	the
terminologies	of	Boolean	value,	Boolean	expression	and	so	on	are	in	use	today.	As
you	can	deduce,	being	able	to	return	values	through	logic	is	very	important	because	it

means	any	decision	you	are	going	to	make	on	the	basis	of	those	values	has	a	solid
basis.	It	means	you	are	certain	what	conditions	are	bound	to	work	and	which	ones	are
bound	to	fail.	Hence	it	is	fair	to	say	that	C	helps	in	making	verified	data	based
decisions.	

	

How	the	switch-Statement	Works:

Just	like	the	if-statement,	the	switch	statement	also	influences	a	program’s	flow	in
case	the	condition	being	tested	proves	to	be	true.	One	thing	you	need	to	note	about	the
switch	statement	is	that	it	sometimes	has	varied	conditions.	The	way	it	goes	is	that	if
the	statement	has	a	variable	that	meets	the	first	condition	contained	in	the	switch
statement,	whatever	command	there	is	goes	through	and	is	executed.	In	fact,	you	can
enter	a	default	within	a	switch	statement	but	it	is	not	mandatory.	In	case	you	have
included	a	default,	and	all	the	variables	within	the	switch	statement	fail	to	meet	the
condition	given,	the	default	you	have	in	place	takes	place.	

In	practice,	switch	statements	come	in	handy	in	solving	problems	of	a	multiple-option
nature;	especially	when	dealing	with	a	program	like	a	menu,	where	you	have
particular	values	associated	with	specific	options.

	

How	the	conditional	operator-Statement	Works:

You	can	denote	the	conditional	operator	like	this:?:	operator

This	is	a	statement	that	you	can	use	in	place	of	the	if…else	statement.	Here	is	an
example	of	the	form	this	statement	takes:

Exp1	?	Exp2	:	Exp3;

Each	of	these	–	Exp1,	Exp2	and	Exp3	–	is	an	expression	on	its	own.	It	is	important
that	you	do	not	forget	to	put	the	colon	in	its	right	position	as	illustrated	above.

How	to	determine	the	value	of	any	given	expression	within	the	statement:

(i)				Evaluation	of	Exp1	takes	place	first.

What	happens	if	it	is	found	to	be	true?	Evaluation	of	Exp2	immediately	takes
place.	At	the	end	of	the	day,	it	is	the	value	of	Exp2	that	is	taken	as	the	entire
expression’s	value.

(ii)	Evaluation	of	Exp1	takes	place	first.

What	happens	if	it	is	found	to	be	false?	Exp2	is	ignored,	and	instead
evaluation	of	Exp3	is	immediately	takes	place.	The	resultant	value	of	the	entire
expression	is	that	of	Exp3.

How	The	goto-Statement	Works

This	one	actually	alters	the	conventional	sequence	of	C	programming.	It	is	known	for
instigating	a	jump	on	unconditional	basis,	to	a	location	within	the	function	where

there	is	a	labeled	statement.	What	happens	then	is	that	you	can	easily	lose	trace	of	the
program	flow;	and	that	is	not	a	good	thing	as	it	makes	it	difficult	for	you	to	modify
the	program	even	if	you	so	wanted.		Suffice	it	to	say,	there	are	experts	who
discourage	programmers	from	using	the	goto	statement.

	

Chapter	7:	The	Role	Of	Loops	In	C	Programming
	

What,	exactly,	is	a	loop?	Within	the	context	of	C	programming,	a	loop	is	that
programming	function	that	enables	iteration	of	a	statement,	or	of	a	condition,	on	the
basis	of	specific	boundaries.	Incidentally,	the	way	loops	work	is	more	or	less	similar
across	different	programming	languages.

	

Notably,	when	you	are	working	with	a	given	statement,	or	with	a	set	of	instructions,
execution	continues	until	such	a	time	as	a	specified	boundary	condition	–	the
anticipated	loop	body	–	is	met.	Thereafter,	repetitions	of	that	initial	cycle	of	operation
can	continue,	involving	the	whole	loop	body,	until	execution	of	the	entire	code	block
is	accomplished	as	required.	Still,	on	the	overall,	you	get	statements	being	executed	in
a	sequential	order.	In	short,	if	you	have	more	than	one	statement	in	the	same	function,
the	program	executes	the	first	statement	first;	the	second	one	follows;	and	so	on.	It	is
worth	noting	that	you	can	have	different	execution	paths	even	when	they	are
complex.	The	main	reason	loops	are	important	in	programming	is	that	it	is	their
statements	that	facilitate	execution	other	statements	severally.

	

Different	Loops	And	How	They	Work:

	

1.	 The	while	loop

The	while	loop	operates	while	a	certain	condition	happens	to	be	true,	repeating	a
statement	or	set	of	statements.	It	actually	performs	the	evaluation	of	the	test
expression.	It	then	ensures	the	condition	is	tested	before	it	can	execute	the	loop	body.
However,	if	the	test	expression	proves	to	be	false,	what	follows	is	the	termination	of
the	while	loop.

	

This	is	how	while	loop	syntax	looks	like:

	

																																																								while	(condition)	{statement;}

	

Note	that	the	statement	needs	not	be	one;	there	could	be	more.

	

2.	 The	for	loop

	

In	this	loop,	execution	of	the	initialization	statement	occurs	just	once.	What	follows

immediately	after	is	the	testing	of	the	expression.	If	ever	it	is	found	false,	returning
zero	(0),	the	loop	gets	terminated.	However,	in	case	the	result	returned	is	non-zero,
meaning	the	test	has	proven	the	expression	to	be	true,	the	codes	within	for	loop	are
automatically	executed.	Also	the	expression	gets	an	update.	After	several	repetitions
of	this	process,	the	expression	being	tested	finally	turns	false.	You	need	to	note	that
you	use	for	loop	mostly	when	you	have	a	known	number	of	iterations.

This	is	how	for	loop	syntax	looks	like:

	

														For	(init;	condition;	increment)	{statement;}

	

Here,	too,	the	statement	can	be	more	than	one.

	

3.	 Do…while	loop

	

This	loop	is	works	almost	similarly	to	how	the	while	loop	works	but	for	one
difference.	Its	body	gets	executed	even	before	it	can	check	the	test	expression.	It	is
only	after	that	initial	execution	that	the	evaluation	of	the	test	expression	takes	place.
In	the	event	that	the	test	expression	is	proven	to	be	true,	the	do…while	loop’s	body
gets	executed	once	again.	The	repetition	process	then	continues	till	such	a	time	as	the
test	expression	returns	a	zero	(0)	value;	meaning	it	turns	false.

	

This	is	how	do…while	loop	syntax	looks	like:

	

														do	{	statement;	}	while	(condition);

	

You	need	to	take	note	of	the	position	of	the	statement	–	not	at	the	end	as	in	other
loops,	but	right	at	the	beginning;	preceding	the	condition.	Reason…?	As	pointed	out
earlier,	the	statement	within	the	do…while	loop	must,	of	necessity,	execute	at	least
one	time	before	it	is	time	to	test	the	condition.	Hence	the	condition	in	this	loop	comes
last.

	

4.	 Nested	loops

	

You	are	dealing	with	nested	loops	when	you	find	yourself	with	loops	within	the	other
loops	already	mentioned	–	the	while;	the	do…while;	or	even	the	for	loop.

	

a)				This	is	how	a	nested	for	loop	syntax	looks	like:

	

for	(init;	condition;	increment)	{	for	(init;	condition;	increment)	{
statement;	}	statement	}

	

b)				This	is	how	a	nested	while	loop	syntax	looks	like:

	

while	(condition)	{	while	(condition)	{statement;}	statement;	}

	

c)					This	is	how	a	nested	do…while	loop	syntax	looks	like:

Do	{	statement;	do	{	statement;	}	while	(condition);

	

5.	 The	infinite	loop

	

Would	you	envisage	a	situation	where	a	given	condition	never	has	a	chance	of	turning
out	false?	Such	are	the	situations	that	call	for	the	use	of	the	for	loop.	Of	course,	of	the
three	for	expressions,	none	will	be	required.	So,	what	you	end	up	with	is	an	endless
loop	simply	because	your	conditional	expression	will,	certainly,	be	empty.	That	is
how	you	end	up	with	an	endless	–	or	infinite	–	loop.	And	just	in	case	you	feel	like
terminating	your	infinite	loop,	simply	press	the	keys,	Ctrl	+	C	simultaneously.

	

Chapter	8:	Functions	in	C	Programming
How	would	you	define	a	function?	Well,	for	the	purposes	of	the	C	programming
language,	a	function	may	be	termed	as	that	set	of	statements	that	perform	tasks	as
one	and	not	as	independent	statements.	You	will	find	a	function	in	every	C	program,
even	if	it	is	just	a	single	one.	Essentially	what	you	always	have	is	a	main	function.
Other	functions	then	come	in	as	additions	defined	by	trivial	programs	that	may	be
present.	If	you	so	wish,	you	can	look	at	a	function	as	a	code	module	that	readily
takes	in	information	–	the	kind	of	information	that	comes	in	symbolic	names
conventionally	referred	to	as	parameters	–	then	processes	some	computations,	and
often	returns	some	fresh	information.	Of	course,	the	information	a	function	returns
depends	on	the	captured	parameter	information.

Anything	unique	about	the	main	function?	Yes,	there	is.	Although	in	handling	you
treat	the	main	function	just	like	any	other	function,	it	is	unique	in	that	it	is	the	only
function	that	the	operating	system	needs	working	whenever	you,	as	the	computer
user,	begin	running	your	program.	In	short,	every	time	you	begin	running	your
machine,	the	first	code	to	be	executed	is	the	main	function.

Here	is	how	the	main	function	structurally	looks	like:

Int //if	successful,	expect	to	return	a	zero	(0)

Main	() //this	is	the	place	for	the	name,	which,	in	this	regard,	is	main

{} //this	is	the	place	for	numerous	codes;	being	the	function
body

	

In	C,	a	code	is	divided	into	diverse	functions	and	you	can	do	the	division	as	you
wish.	However,	for	the	purpose	of	logic,	you	need	to	distribute	your	code	amongst
the	functions	at	hand	in	a	way	that	leaves	every	function	performing	a	defined	task.
You	actually	need	to	take	every	C	function	as	a	major	building	block	within	your
program.	Simply	put,	every	C	program	that	you	have	working	is	written	through	the
use	of	functions.	This	is	done	so	that	the	program	can	be	used	repetitively	and	with
consistent	efficiency,	and	also	to	make	it	better	understood.

	

As	you	continue	working	on	C	programming,	there	are	some	terms	that	you	will
come	across	and	you	need	to	know	their	meaning	in	the	relevant	context.	One	of
those	terms	is	function	declaration.	What	is	it?		

	

Function	declaration

Do	you	recall	what	a	function	is?	A	function	declaration,	on	its	part,	is	responsible

for	instructing	the	compiler	on	the	function	name,	the	return	type,	as	well	as	the
function	parameters.	And	the	function	body	is	actually	derived	from	the	function
definition.

Here	is	the	form	that	a	function	definition	generally	takes	in	C:

Return_type	function_name(parameter	list)	{function	body}

Here	below	are	the	components	of	a	function	definition,	including	the	header	and	the
body,	which	are	the	main	parts:

1.	Return	type

It	is	anticipated	that	a	function	will	return	a	value;	and	it	actually	may.	Now,	that
value	is	of	a	certain	data	type.	That	data	type	is	what	we	refer	to	as	return_type.
However,	as	you	may	have	already	noted,	there	are	some	functions	that	go	well
within	the	program,	yet	they	do	not	return	a	value.	This	is	the	scenario	where	we
declare	that	the	return_type	is	void	–	void	being	one	of	C’s	keywords.

2.	Function	name

This	is	the	exact	function’s	name.

3.	Parameters

First	of	all	you	need	to	realize	that	you	do	not	have	to	work	with	parameters	when	it
comes	to	functions	in	C	programming.	However,	when	you	have	them,	it	is	important
to	know	what	they	constitute.	You	can	actually	take	a	parameter	the	way	you	do	a
placeholder.	What	happens	is	that	the	minute	you	initiate	a	function,	you	give	the
parameter	some	value.	It	is	this	value	that	you	can	cite	as	being	the	actual	parameter;
or	alternatively,	the	argument.

From	the	parameter,	you	get	a	parameter	list;	and	this	one	is	in	reference	to	the	type;
the	order;	as	well	as	the	actual	number	of	parameters	the	function	has.	If	you	then
add	your	parameter	list	to	the	function	name,	what	you	get	is	the	function	signature.

4.	Function	body

When	it	comes	to	the	function	body,	what	you	will	find	in	it	is	an	assembly	of
statements	defining	what	the	actual	function	is	all	about.

	

Why	Use	C	Functions?

Let	us	summarize	why	it	is	important	to	use	C	functions:

a)											To	save	yourself	the	repetitive	task	of	re-writing	the	program’s	code	or	logic

b)											You	can	call	on	the	C	functions	any	time	you	need	a	similar	functionality

c)												You	always	have	access	to	the	program	anywhere	and	anytime,	thanks	to
the	functions	that	keep	the	program	stable	and	working	consistently	even	when
your	machine	is	off.

d)											Functions	make	it	possible	and	easy	for	you	to	track	a	huge	C	program.	This
is	because	you	are	not	faced	with	plain	massive	data	but	data	that	is	broken	down
in	logical	functions.

How	C	Function	Works

The	C	function	has	three	distinct	aspects,	namely:

(i)											The	prototype,	which	you	can	also	term	function	declaration.

What	this	one	does	is	keep	the	compiler	informed	on	the	issues	of	function	name;
the	function	parameters;	as	well	as	the	return	value	of	the	data	type.	The	syntax
for	the	function	declaration	is:

return_type	function_name	(argument	list);

(ii)									The	function	call

This	is	the	caller	of	the	real	function.	Its	syntax	is:

																																																																																																																													
																																																																						function_name	(arguments	list);

(iii)						The	function	definition

This	is	where	you	find	the	entire	set	of	statements	requiring	execution.	The	syntax
for	the	function	definition	is:

																																																																																																																													
																																										return_type	function_name	(arguments	list)	{	body	of
function;	}

You	need	to	remember	that	it	is	important	to	declare	a	function	and	to	clearly	define
it	before	you	can	proceed	to	call	in	a	C	program.

Calling	a	C	function

When	it	comes	to	calling	a	C	function	within	a	program,	the	best	way	to	go	about	it
is:

(i)				Calling	it	by	value

(ii)	Calling	it	by	reference

	

Calling	a	C	Function	By	Value

(i)						When	it	comes	to	calling	a	C	function	by	value,	you	have	the	variable’s
value	passed	right	to	the	C	function	in	its	parameter	state.

(ii)									As	you	make	your	call,	you	need	to	note	that	you	cannot	modify	the	real
parameter	value	through	the	formal	parameter.

(iii)						It	is	important	to	appreciate	during	your	calling	of	the	C	function	that	the
actual	parameter	and	the	formal	parameter	have	varying	memory.

You	also	need	to	take	note	of	the	difference	between	the	actual	parameter	and	the
formal	parameter.	Here	lies	the	primary	difference:	

							The	actual	parameter	is	effectively	the	one	used	in	the	course	of	a	function
call.

The	formal	parameter	happens	to	be	the	argument	that	you	use	within	the	function
definition.

Chapter 	9:	Structures	and	Union	in	C
	

The	general	meaning	of	C	structures	as	represented	by	the	C	keyword,	struct,	is	a	data
type	declaration	of	a	complex	nature,	which	defines	a	variable	list	whose	items	are
grouped	under	a	single	name	within	a	memory	block.	It	makes	it	convenient	to	reach
individual	variables	through	just	one	pointer.

As	such,	when	we	speak	of	structures	in	the	C	programming	language	context,	we	are
referring	to	a	data	type	that	is	user	defined,	and	which	facilitates	combination	of	data
items	that	are	varied	in	nature.	Structures	effectively	stand	for	records	just	the	same
way	you	safeguard	literature	in	libraries.	This	enables	you	to	track	down	details	about
the	book	title,	the	author	and	such	other	pertinent	details.

Here	is	the	syntax	of	struct:

Struct	structure_name	{	//statements};

In	case	you	want	a	C	structure	that	reflects	the	dictionary	name,	its	prices	as	well	as
its	number	of	pages,	you	could	have	it	as	follows:

Struct	Dictionary	{	char	name	[15];	int	price;	int	pages;	};

	

How	To	Define	C	Structure

It	is	necessary	to	utilize	the	struct	statement	in	defining	the	structure	of	the	C
language,	a	statement	that	is	good	at	defining	fresh	data	type	that	happens	to	have	in
excess	of	one	member.	Important	to	note	too	is	the	fact	that	it	is	optional	to	use	a
structure	tag.	As	you	do	your	definition,	you	need	to	appreciate	that	every	member
definition	is	an	ordinary	variable	definition,	as	exemplified	by	int	i;	float	f,	and	such
other	valid	definitions	that	are	variable	based.	Before	you	insert	the	semi-colon,	you
are	at	liberty	to	specify	additional	structure	variables.	Being	at	liberty,	of	course,
means	that	you	do	not	have	to.

When	you	want	to	declare	structure	variables,	remember	it	is	all	right	and	doable	to
declare	the	variables	after	you	have	completed	defining	the	structure	itself.	Act

Declaring	Structure	Variables

It	is	possible	to	declare	variables	of	a	structure,	after	the	structure	is	defined.
Structure	variable	declaration	is	similar	to	the	declaration	of	variables	of	any	other
data	types.	Structure	variables	can	be	declared	in	following	two	ways.

	

Getting	Access	To	Structure	Members

How	do	you	access	structure	members?	You	accomplish	this	by	using	what	is	known
in	C	as	member	access	operator,	which	is	coded	as	period	(.).	That	code	exists	right
between	the	name	of	the	structure	variable	and	the	very	structure	member	you	are

trying	to	have	access	to.	The	keyword	to	use	in	trying	to	define	any	variable	of	the
structure	kind	is	struct.	

Just	to	alert	you,	a	structure	can	pass	for	a	function	argument	in	C,	just	as	you	do	with
other	variables	or	even	pointers.	Here	is	an	example:

#include	<stdio.h>

	

Relating	Pointers	With	Structures

It	is	also	possible	to	define	a	pointer	to	a	structure	just	as	you	are	able	to	define	a
pointer	to	a	variable	of	any	kind.	Here	is	a	fitting	example:

struct	dictionaries	*	struct	_pointer;

Hereafter	you	can	always	store	the	particular	address	associated	with	a	structure
variable	within	the	pointer	variable	just	defined	above.	What	you	need	to	do	in	order
to	locate	the	actual	address	associated	with	a	structure	variable	is	to	place	the
operator,	&,	right	before	the	name	of	the	structure.

Here	below	is	a	fitting	example:

																																																								Struct_pointer	=	&dictionaries1;

To	succeed	in	accessing	the	members	of	any	structure	by	use	of	a	pointer	associated
with	the	structure,	you	need	to	make	use	of	operator,	->.

Here	below	is	a	suitable	illustration:

struct_pointer->title;

Bit	Fields

What	are	they?	Bit	fields	is	generally	a	term	applied,	within	the	computer
programming	arena,	to	encompass	storage	of	multiple	neighboring	bits	that	bear
logic;	also	in	situations	where	sets	of	bits	as	well	as	single	bits	are	easily	addressed.
The	bit	field	often	represents	integral	kinds	of	already	known	bit=width,	one	that	is
fixed	in	nature.

Another	thing	you	need	to	know	about	bit	fields	is	that	they	facilitate	data	packing
within	a	structure.	This	comes	in	handy	particularly	in	times	when	data	storage	or	the
memory	in	general,	is	at	a	real	premium.	You	will	find	more	details	pertaining	to	bit
fields	later	in	the	book.

Union	in	C

Do	you	recall	that	a	computer	has	storage	space	in	which	to	store	data?	Now	that	is
very	central	in	explaining	what	union	in	the	C	programming	language	is	because
union	happens	to	be	some	special	data	type,	which	facilitates	taking	into	the	computer
memory	varied	data	types.	In	C,	union	is	almost	similar	to	structure;	actually	being
more	like	a	derived	mode	of	structure.	In	fact,	the	main	difference	you	will	see	is	in
the	definition,	and	only	on	the	part	of	the	keyword.	Whereas	you	use	struct	when

defining	structure	in	C,	with	union	in	C	the	keyword	you	use	is	union.

Still,	you	need	to	note	that	even	when	the	union	comes	with	a	number	of	members,	it
is	only	one	of	them	that	can	bear	value	at	any	one	time.	Suffice	it	to	say,	it	is	the
union,	this	special	data,	which	enables	the	memory	to	work	with	efficiency	even	as	it
handles	different	tasks.

You	can	define	a	union	this	way:

union	car	{	char	name	[20]	;	int	price	;	}	;

In	order	to	appreciate	better	what	a	union	is,	you	need	to	take	the	union	statement	into
account,	where	you	will	notice	the	new	data	type	being	laid	out	with	its	numerous
members,	all	helping	in	running	your	program.

Below	is	the	union	statement	format:

Union	[union	tag]	{	member	definition;	member	definition;	…	member	definition;
}	[a	single	or	several	union	variables];

Something	else	you	need	to	note	is	that	it	is	optional	for	you	to	use	a	union	tag.	You
also	need	to	know	that	every	one	of	your	member	definitions	is	basically	an	ordinary
variable	definition,	such	as,	int	i;	float	f;	or	any	of	those	other	variable	definitions	that
are	valid.		

How	would	you	define	data	of	a	union	type	that	bears	three	members,	i,	f,	as	well	as
str?

To	accomplish	this,	you	need	first	of	all	to	have	it	clear	in	your	mind	that	the	minute
you	finalize	the	definition	of	the	union,	and	even	before	you	can	insert	your	ending
semi-colon,	there	is	room	to	specify	a	union	variable,	or	even	multiple	of	them.	Note
you	have	room	to	do	that	but	you	are	not	obliged	to	do	it	–	it	remains	optional.

Here	is	how	you	define	the	data	with	three	members:

union	data	{	int	i;	float	f;	char	str[20];	}	data;

What	becomes	clear	is	that	your	data	type	variable	is	capable	of	storing	an	integer,	a
floating	point	number,	and	sometimes	even	a	whole	string	of	characters.	So	you	end
up	having	that	one	variable	that	is,	certainly,	in	a	single	memory	location,	being
utilized	as	storage	for	multiple	data	types.	Gladly,	it	is	possible	for	you	to	utilize	a
built	in	data	type	of	your	choice,	or	a	user	defined	data	type	within	a	union,	all
depending	on	the	prevailing	requirement.

Another	important	thing	to	know	is	that	you	need	not	worry	about	accommodation	of
a	large	union	member	because	the	memory	a	union	occupies	happens	to	be	sufficient
to	accommodate	the	largest	of	your	union	members.

If	you	consider	the	example	provided	immediately	above,	the	data	type	is	ready	to
occupy	memory	space	of	20	bytes;	reason	being	that	20	bytes	happens	to	be	the
maximum	space	that	a	character	string	can	occupy.	If	you	would	like	to	know	the	size
of	the	entire	memory	that	the	above	union	has	occupied,	here	it	is:

#include	<stdio.h>	#include	<string.h>	union	data	{	int	I;	float	f;	char	str[20]	};
int	main()	{	union	data	data;	printf(“data	occupied	memory	size	:	%d\n,
sizeof(data));	return	0;	}

When	whatever	is	up	here	above,	meaning	the	code,	has	been	duly	compiled	and
actually	executed,	the	result	you	receive	is	very	simple.	Here	it	is:

data	occupied	memory	size	:	20

How	To	Access	Union	Members

In	order	to	access	a	union	member,	what	you	use	is	what	is	referred	to	as	member
access	operator.	And	while	this	might	sound	technical,	the	member	access	operator	is
simple	to	understand	because	it	is	coded,	(.)	–	a	period.	This	period	appears	right
between	the	name	of	the	union	variable	and	the	select	union	member;	the	one	you	are
trying	to	access.	In	defining	union	type	variables,	the	keyword	you	need	to	use	is
union.

Illustration	on	using	unions	within	your	program:

#include	<stdio.h>	#include	<string.h>	union	data	{	int	i;	float	f;	char	str[20];
};	int	main()	{	union	data	data;	data.i	=	10;	data.f	=	220.5;	strcpy(data.str,
“C	programming”);	printf(data.i:	%d\n”,	data.i);	printf(data.f	:	%f\n”,
data.f);	printf(“data.str	:	%s\n”,	data.str);	return	0;	}

	

However,	the	way	this	illustration	is,	the	members	of	the	union,	i	and	f,	could	have
their	values	corrupted	because	the	final	value	has	taken	up	the	entire	memory.	You
could	get	the	following	results	after	code	compilation	and	execution:

data.i	:	1917853763

data.f	:	4122360580327794860452759994368.000000

data.str	:	C	Programming

Solution…?	Use	one	member	at	a	time.

Illustrating	how	best	to	use	unions	within	your	program:

#include	<stdio.h>	#include	<string.h>	union	data	{	int	i;	float	f;	char	str[20];
};	int	main()	{	union	data	data;	data.i	=	10;	data.f	=	220.5;	strcpy(data.str,
“C	programming”);	printf(“data.str	:	%s\n”,	data.str);	return	0;	}

	

In	this	latter	illustration,	you	have	opted	to	use	one	member	only,	giving	it
priority,	and	as	a	result,	you	will	have	every	union	member	now	printed	properly.
After	the	code	has	been	compiled	and	also	executed,	here	is	the	result	you	are
bound	to	receive:

	

data.i	:	10

data.f	:	220.500000

data.str	:	C	Programming
	

	

Chapter	10:	Bit	Fields	and	Typedef	Within	C
	

Bits	are	essential	in	managing	data	storage	in	your	machine.	That	is	the	reason
structure,	as	well	as	union	members,	has	their	sizes	specified	in	bits.	What	you	want
is	to	be	able	to	utilize	the	storage	at	your	disposal	as	efficiently	as	possible	because	it
is	in	no	way	infinite.	It	is	limited	in	scope	and	capacity	and	you	need	to	be	able	to
operate	successfully	within	the	limited	range.

Take	a	situation	where	the	C	program	you	have	has	some	variables	that	are	either	true
or	false,	and	they	are	all	grouped	in	a	single	structure	named	status.	In	short,	suppose
you	had	the	structure	looking	like	the	illustration	below:

struct	{	unsigned	int	widthValidated;	unsigned	int	heightValidated;	}	status;

	

Bit	Field	Storage

	

Ordinarily	what	you	do	is	establish	the	variables	within	a	structure,	thereafter	you
define	each	variable’s	width,	and	that	informs	the	C	compiler	the	precise	number	of
bytes	you	need	to	utilize.	Here	is	an	example	of	how	you	can	write	the	structure	from
the	illustration	above:

Struct	{	unsigned	int	widthValidated	:	1;	unsigned	int	heightValidated	:	1;	}	status;

To	be	clear,	you	need	in	total	4	bytes	for	the	status	variable’s	memory	space.	However,
practically,	you	are	only	going	to	use	up	2	bits	because	they	are	sufficient	to	store	the
values	you	have	in	the	illustration	above.	In	C,	classes	as	well	as	structures	can	have
some	members	occupying	less	storage	space	than	a	major	type.	Such	are	the	members
referred	to	as	bit	fields.

	

Bit	field	can	be	used	to	reduce	memory	consumption	with	the	knowledge	that	it	is
only	some	bits	which	will	be	used	for	the	variable.	Bit	fields	allow	efficient	packaging
of	data	in	the	machine	memory.

The	obvious	fact	is	that	an	integer	takes	two	bytes	(16-bits)	in	memory.	Sometimes	we
need	to	store	value	that	takes	less	than	2-bytes.	In	such	cases,	there	is	wastage	of
memory.	For	example,	if	we	use	a	variable	temp	to	store	value	either	0	or	just	1.	In	our
current	scenario,	only	a	single	bit	of	memory	is	going	to	be	used	rather	then	16-bits.
By	using	bit	field,	we	can	save	lot	of	memory.

What	you	use	for	creating	bit	fields	in	C	include	unsigned	int;	signed	int,	and
sometimes	Bool	when	it	comes	to	C99.	You	begin	by	setting	up	your	bit	field	using
structure	declaration,	which	basically	labels	every	field	and	also	ascertains	what	its
width	is.	After	this,	the	compiler	packs	all	the	bit	fields	in	adjacent	location	and	which
are	of	uniform	type,	and	ends	up	reducing	the	number	of	words.	This	subsequently

drastically	reduces	the	storage	space	required	for	the	bit	fields.	In	short,	you	can
credit	the	bit	fields	with	allowing	data	packing	into	a	structure.

For	instance:

Numerous	objects	can	be	packed	to	form	a	machine	word.	For	example,	it	is
possible	to	compact	1-bit	flags
It	is	also	possible	to	read	file	formats	of	a	non-standard	nature;	or	those	with
external	file	formats.	A	good	example	is	reading	9-bit	integers.

The	way	the	C	programming	language	enables	this	is	through	structure	definition,
where	you	can	put:	bit	length	somewhere	following	the	variable.

A	suitable	illustration:

struct	packed_struct	{	unsigned	int	f1:1;	unsigned	int	f2:1	unsigned	int	f3:1;
unsigned	int	f4:1;	unsigned	int	type:4;	unsigned	int	my_int:9;	}	pack;

There	are	six	members	in	total	in	the	above	illustration.	They	include	four	1-bit	flags,
which	are	f1,	f2	as	well	as	f3;	a	single	4-bit	type;	and	also	one	9-bit	my_int.	It	is	C
that	then	conveniently	packs	those	bit	fields	in	a	compact	manner.

It	is	important	to	know	also	that	C	allocates	bit	fields	within	integers	starting	from	the
one	that	is	least	significant	to	the	one	that	is	most	significant.	Let	us	observe	the	code
below:

struct	mybitfields	unsigned	a	:	4;	unsigned	b	:	5;	unsigned	c	:	7;	}	test;	int
main(void)	{	test.a	=	2;	test.b	=	31;	test.c	=	0;

This	is	how	C	would	arrange	the	bits:

00000001	11110010

c c c c c c c b bbbbaaaa
	

Typedef	Within	C

Are	you	familiar	with	the	tact	of	using	an	alias?	While	that	may	be	common	to
people,	it	is	not	practically	confined	to	human	folk.	The	C	language	has	a	way	of
creating	aliases	for	data	types;	and	typedef	is	the	keyword	that	helps	in	this	process.
Essentially	what	happens	is	that	you	give	an	entirely	new	name	to	your	chosen	data
type.	Sometimes	the	type	name	represented	is	a	complex	one.

Here	below	is	an	example:

You	are	required	in	this	instance	to	provide	a	definition	for	the	term,	byte,	for	1-byte
numbers.	The	definition	is:

typedef	unsigned	char	BYTE;

The	important	part	that	follows	now	is	that	you	can	now	use	BYTE,	which	is,	in	this
position,	an	identifier,	taking	it	to	be	the	abbreviation	for	the	data	type	shown	as
unsigned	char.

What	you	would	have	after	processing	is	complete	is:

BYTE	b1,	b2;

The	uppercase	in	BYTE	stands	out.	Why	do	we	use	the	uppercase	as	opposed	to	the
lowercase?	Simple:	It	has	always	been	the	custom.	However,	this	is	not	all.	It	is
helpful	to	use	the	uppercase	so	that	you	are	always	reminded	that	this	type	name	is
actually	symbolic	–	symbolic	abbreviation.	Still,	nothing	prevents	you	from	writing
your	symbolic	abbreviation	in	lowercase.	In	short,	if	you	so	wish,	you	could	write
your	abbreviation	as:

Typedef	unsigned	char	byte

Typedef	is	also	used	to	provide	a	name	for	data	types	that	happen	to	be	user-defined.
You	may,	for	instance,	use	a	structure	based	typedef	in	defining	an	entirely	new	data
type.	Thereafter,	you	use	the	fresh	data	type	in	defining	structure	variables.

Comparing	typedef	to	#define

The	big	question	is:	what	is	#define	first	of	all?	Only	after	we	know	what	it	is	can	we
make	a	good	comparison.	#define	is	actually	a	C-directive.	Next	thing	you	should
know	is	that	it	is	also	used	in	defining	aliases	for	different	data	types.	Can	we	call	that
a	similarity	with	typedef?	Sure,	we	can.

So,	where	does	the	difference	between	typedef	and	#define	lie?

Well,	you	will	find	more	than	one	difference	when	you	compare	typedef	to	#define.
Here	are	the	differences:

Remember	typedef	provides	symbolic	names	for	data	types?	Although	#define
does	this	as	well,	it	goes	further	to	provide	aliases	for	data	values	also.
Incidentally,	this	is	as	simple	as	defining	1	as	simply	ONE.
You	will	find	the	other	difference	right	within	the	processing.	In	C,	it	is	the
compiler	that	determines	what	your	typedef	is	all	about;	performing	its
interpretation.	However,	when	it	comes	to	your	#define	statements,	it	is	the	pre-
processor	that	does	the	processing.

How	would	you	use	$define	within	your	program?

Here	is	a	good	example:

Include	<stdio.h>	#define	TRUE	1	#define	FALSE	0	int	main()	{	printf(“Value
of	TRUE	:	%d\n”.	TRUE);	printf(“Value	of	FALSE	:	%d\n”.	FALSE);	return	0;
}

What	is	the	result	after	compilation	as	well	as	execution	of	the	code?	Here	it	is:

Value	of	TRUE	:	1

Value	of	FALSE	:	0

	

Chapter	11:	Input	Output	(I/O)	In	C
Is	this,	by	any	chance,	the	conventional	input	and	output	that	are	found	in	various
processes?	Well,	the	input	and	output	here	may	well	be	associated	with	a	process,	but
they	are	not	necessarily	conventional	in	the	real	sense.	In	C,	the	two	happen	to	be
facilitated	by	some	functions	that	are	in-built	within	the	program;	the	functions	being
printf()	and	also	scanf().

	

In	order	to	appreciate	what	input	means	in	C,	after	mentioning	that	it	is	the	act	of	feeding
data	right	into	your	program,	you	need	to	know	that	input	sometimes	comes	as	a	file.
Other	times	it	emerges	from	some	command	line.

	

As	far	as	output	goes,	you	will	be	right	to	associate	it	with	what	you	see	on	your
computer	screen;	what	comes	out	through	your	printer;	or	in	general	whatever	data	that
comes	into	any	of	your	files.	When	your	data	that	has	become	your	output	does	not
appear	on	your	screen,	it	is	often	saved	within	your	computer	in	form	of	text	or	what	is
referred	to	as	binary	files.

	

One	thing	you	need	to	know	is	that	every	time	you	have	a	program	running	that	calls	for
the	use	of	your	keyboard	or	even	your	screen,	certain	three	files	automatically	open.	In
fact,	the	C	program	has	a	way	of	treating	every	device	as	a	computer	file	even	when	all
you	are	interested	in	is	displaying	some	data.

	

Incidentally,	what	do	we	name	as	file	in	C	programming?	In	simple	language,	what	you
refer	to	as	file	is	some	disk	space	where	you	store	grouped	data.	You	could	also	look	at	a
file	as	representing	some	byte	sequence,	irrespective	of	whether	the	file	happens	to	be
text	or	binary.

	

Why	have	files,	anyway?	Simple	–	to	ensure	your	data	is	well	preserved	for	use	at	a	later
time.	If	you	terminate	a	computer	program	and	you	happen	not	to	have	a	file,	all	the	data
you	have	been	looking	at,	and	probably	working	with,	will	be	lost.	However,	once	you
create	your	file,	your	data	remains	intact	all	through,	and	all	you	need	to	do	is	give	your
computer	a	few	simple	commands	and	your	file	appears.	In	C,	what	you	are	bound	to
find	in	plenty	are	functions.

	

Here	are	two	main	categories	of	the	high	level	Input/Output	functions:

	

(1)	The	text	file

(2)	The	binary	file

	

The	file	functions	in	C	are	not	complicated,	so	you	will	find	them	easy	to	learn.	At	all
times,	you	need	to	get	in	touch	with	the	stdio	library	for	your	functions	to	succeed.	Of
course,	you	have	already	seen	it	used	in	examples	provided	in	earlier	chapters	of	this
book.	The	question	at	this	juncture	is:	what	exactly	is	in	the	stdio	library?	Well,	what	you
may	actually	be	interested	in	that	is	stored	in	the	stdio	library	are	the	file	functions
involving	input	as	well	as	output.

	

	

Here	they	are	below:

	

(i)				Fopen

This	one	performs	the	function	of	opening	your	text	file.	You	may	find	this
prototype	from	fopen	helpful:

FILE	*fopen(const	char	*	filename,	const	char	*	mode);

	

(ii)	Fclose

This	is	the	one	that	performs	the	function	of	closing	your	text	file

(iii)						Feof

This	one	performs	the	function	of	detecting	your	end-of-file	marker	in	the	file

(iv)						Fscanf

The	function	performed	by	this	one	is	reading	the	input	from	your	file	that
happens	to	be	formatted

(v)	Fprintf

This	one	does	the	function	of	printing	the	file	output	that	happens	to	be	formatted

(vi)						Fgets

This	one	undertakes	the	function	of	reading	any	string	your	file	contains

(vii)				Fputs

This	one	performs	the	function	of	printing	any	string	required	into	your	file

(viii)		Fgetc

This	is	the	one	that	performs	the	function	of	reading	characters	right	from	your
file

(ix)						Fputc

This	is	the	one	that	does	the	function	of	printing	characters	right	into	your	file

Dealing	With	File	Opening		In	Case	Of	I/O	Text	File

	

This	is	the	function	denoted	by	Fopen.	It	is	important	that	you	know	that	besides
opening	your	text	file,	this	function	utilizes	a	specific	mode	as	it	undertakes	file	opening.
The	three	modes	it	often	uses	are:

Read,	denoted	as	r
Write,	denoted	as	w
Append,	denoted	as	a.

	

There	are	other	modes	besides	the	three	already	named,	and	they	are	as	follows:

							The	one	used	for	reading	as	well	as	writing	and	is	denoted	as	mode	r+
							The	one	that	does	the	opening	of	the	text	file	for	the	purposes	of	reading	as

well	as	writing;	proceeds	to	truncate	it	so	that	it	reduces	to	a	length	of	zero;	or	if	no
file	exists	proceeds	to	create	one.	This	is	the	mode	referred	to	as	w+.

							This	is	the	mode	credited	with	opening	your	text	file	for	reading	as	well	as
writing;	and	beyond	that	it	engages	in	creating	a	file	where	none	exists.	On	top	of
those	functions	borne	by	this	same	mode,	it	enables	reading	right	from	the
beginning	while	only	facilitating	appending	when	it	comes	to	writing.

The	way	text	file	opening	works	is	by	the	fopen	statement	opening	file,	“output.txt”
within	the	write	or	w-mode.	In	cases	where	the	function	finds	the	file	not	existing,	the
file	gets	created.

	

However,	you	need	to	be	cautious	not	to	try	creating	a	file	when	another	one	is	in
existence	because	if	you	do,	the	existing	file	gets	destroyed	and	you	are	left	with	the	new
one.

	

As	for	the	fopen	command,	it	function	is	to	return	a	pointer	to	your	file,	and	that	gets
stored	within	the	variable	ptr_file.	Just	in	case	your	file	fails	to	open,	you	get	the	variable
ptr_file	returning	NULL.if(!ptr_file).

	

What	then	assesses	if	your	file	has	opened	is	the	if-statement,	and	that	is	executed	only
after	fopen	performs	its	function.	How	do	you	tell	if	or	not	your	file	has	opened?	Well,
you	will	observe	the	program	returning	a	one	(1)	in	case	fopen	failed	in	its	function	of
opening	the	file.	Of	course,	this	then	becomes	your	indication	that	something	is	amiss
and	needs	addressing.

	

	

Reading	your	text	file	in	C

	

The	function	that	reads	your	file	content	is	the	fgets;	but	that	is	only	after	you	have
successfully	opened	your	file	in	read	or	r-mode.	The	fscanf	function	is	also	helpful	in
this	situation,	and	that	is	on	condition	your	file	is	well	formatted.

	

When	you	want	to	prepare	a	file	for	reading,	you	open	the	file	as	“input.txt”,	and	the
function	you	apply	for	this	purpose	is	fopen;	the	mode	being	read	mode	or	r-mode.	The
process	involves	fgets,	which	is	essentially	a	library	function,	reading	every	line
comprising	not	more	than	1,000	characters.	Then	in	case	fgets	is	successful	in	executing
the	function,	which	means	it	has	read	all	the	lines	in	the	text	file	and	reached	the	end	of
file,	otherwise	referred	to	as	EOF,	the	value	you	should	expect	to	see	returned	by	fgets	is
NULL.	What	follows	thereafter	is	the	printing	of	every	line	on	stdout,	ordinarily	on	your
screen,	and	it	goes	on	till	EOF	comes.	At	this	juncture,	you	would	be	fine	instigating	the
closing	command	to	bring	the	program	to	a	successful	end.

	

Dealing	With	File	Closing:	Fclose(Ptr_File)

	

The	fclose	statement	closes	the	text	file	for	you.	If	what	you	are	doing	is	writing	files,
you	should	not	expect	this	function	to	take	place	before	you	initiate	it.	So	it	is	for	you	to
instigate	the	fclose	command	at	the	time	you	deem	appropriate.	Something	else,	if	in	the
course	of	typing	your	command	you	omit	‘f’	and	type	only	‘close’,	the	function	will	not
operate.	It	is	worth	noting	that	the	close	command	is	entirely	different	from	fclose	in	C
programming.

	

You	need	to	note	that	the	fclose	function,	or	fclose(),	ordinarily	returns	a	zero	whenever
it	is	successful.	However,	whenever	it	encounters	an	error	while	attempting	to	close	the
file,	the	result	it	returns	is	EOF.	This	EOF,	though	meaning	End	of	File,	happens	to	be
also	a	constant,	which	is	defined	within	stdio.h,	a	file	in	the	header.	There	is	also
something	else	that	this	function	does	besides	closing	your	file	–	it	does	flush	any
pending	data,	the	one	remaining	in	the	buffer,	and	sends	it	into	the	file	before	closing	the
file.

	

Any	danger	if	files	fail	to	close	in	the	right	manner?	Sure!	If	the	affected	files	happen	to
be	many,	you	run	the	risk	of	your	program	crashing.	This	is	after	failing	to	locate	any
remaining	file	handles,	and	probably,	running	out	of	memory	space.

	

Dealing	With	Printf

When	it	comes	to	the	printf	statement,	you	should	not	expect	to	see	the	newline,	\n,
anywhere	within	the	format	string.	The	newline	is	rendered	redundant	by	virtue	of	the
fgets	function	adding	the	newline,	\n,	to	each	line	end	after	reading	it.

	

	

Chapter	12:	C	Header	Files	and	Type	Casting
	

What,	exactly,	is	a	header	file?	It	is	an	important	file	in	C	programming,	as	it	contains
declarations	as	well	as	macro	definitions,	and	those	are	shared	amongst	a	good
number	of	source	files.	What	you	do	when	you	want	to	reach	a	header	file	in	C	is
ensure	you	have	included	it	in	your	pre-processing	command	or	directive	that	you
issue;	and	that	is	by	typing	‘#include’.	It	is	actually	the	same	way	you	see	the	header
file	that	comes	with	the	C	compiler	having	stdio.h.

	

The	header	file	has	an	extension	that	is	denoted	as	.h	and	it	is	the	one	that	bears	the
declarations	of	the	C	function	as	well	as	the	macro	definitions.	Headers	in	C	come	in
two	types,	namely:

	

Programmer	written	files

Compiler	attached	files

When	you	include	a	header	file,	the	impact	of	it	is	equivalent	to	having	the	header	file
content	copied.	Even	then,	you	are	discouraged	from	attempting	to	copy	a	header
file’s	content	because	you	would	be	risking	creating	many	errors.	The	danger	is
particularly	high	in	cases	where	your	source	files	are	many	within	the	program.

Instead	of	attempting	to	work	on	the	content	in	the	header	file,	you	need	to	adopt	the
accepted	and	widely	used	practice	of	keeping	a	select	set	of	items	in	your	header	files.
Those	C	items	include:

The	constants
The	macros
The	global	variables	for	the	system
The	function	prototypes

With	these	properly	secured	within	the	header	file,	you	are	at	liberty	to	include	that
particular	header	file	as	and	when	you	need	to.

How	The	include	syntax	Works

In	the	working	of	the	pre-processing	directive,	#include,	you	as	the	user,	and	your
system	header	files,	are	brought	together	by	the	program.	These	are	the	two	forms	that
the	directive	takes:

a)				#include	<file>

What	this	directive	initiates	is	a	search	through	specific	system	directories	contained	in	a
standard	list.	This	search	is	meant	to	track	down	a	file	that	bears	the	name,	file.	As	a
programmer,	you	are	at	an	advantage	as	you	can	also	pre-pend	directories	to	the	existing
standard	list.	The	way	to	do	this	is	by	using	the	–I	option	as	you	compile	your	own	source

code.	

b)				#include	“file”

This	happens	to	be	the	form	you	are	meant	to	use	for	your	header	files	whenever	you
are	writing	using	own	program.	What	it	does	is	search	for	a	specific	file	that	goes	by
the	name	of	file,	and	the	place	it	searches	is	right	within	the	directory	with	your
current	file.	Here,	too,	you	can	pre-pend	your	directories	to	the	list	with	the	existing	–
I	option	as	you	compile	your	own	source	code.	

How	The	include	operation	Works

This	one,	which	you	may	also	refer	to	as	the	#include	directive,	works	by	simply
guiding	the	C	pre-processor	into	scanning	some	specific	file	as	your	input,	and	then
proceeding	to	work	with	the	remaining	part	of	the	source	file	which	is	current.

As	for	the	pre-processor	output,	it	has	varied	categories	of	output	as	follows:

The	output	generated	at	program	initiation
Output	emanating	from	the	file	you	have	included
Output	emanating	from	text	following	execution	of	the	#include	directive

Let	us	take	the	example	of	a	header	file,	say,	header.h:

char	*test	(void);

And	the	main	program	using	the	header	file	is	named	program.c

This	is	generally	what	you	would	comprehensively	have:

int	x;	#include	“header.h”	int	main	(void)	{	puts	(test	());	}

In	this	case,	the	compiler	will	be	seeing	a	token	stream	similar	to	the	one	it	would	see
if	it	was	program.c	reading.	See	such	a	situation	here	below:

Int	x;	char*test	(void);	int	main	(void)	{	puts	(test	());	}

Establishing	One-Time	Headers

You	need	to	guard	against	having	headers	processed	severally	so	that	you	end	up	with
more	than	one	header,	which	is	basically	an	error.	The	way	to	do	this	is	to	include	the
header	file	only	once;	the	only	way	there	is	to	ensure	the	C	compiler	processes	it	once
only.	The	question	is	how	to	go	about	ascertaining	that	you	include	your	header	file
only	that	once.	Gladly,	there	is	a	standard	way	of	doing	this,	and	it	also	happens	to	be
simple.	This	standard	method	involves	enclosing	the	entire	file	contents	within	a
conditional.

See	example	here	below:

#ifndef	HEADER_FILE

#define	HEADER_FILE

the	entire	header	file	file

#endif

This	is	how	our	example	here,	what	is	referred	to	as	construct,	works.	It	is	generally
known	as	wrapper	#ifndef.	When	you	find	yourself	including	the	header	a	second
time,	be	sure	the	conditional	will	come	out	false.	This	is	because	the	header	file,	(or
HEADER_FILE),	happens	to	be	already	defined.	The	processor,	on	the	other	hand,
will	efficiently	ignore	the	file	contents	so	that	the	C	compiler	does	not	get	opportunity
to	see	it	a	repeat	time.

The	Workings	Of	Computed	Includes

It	is	practical	to	imagine	that	you	may	sometimes	have	several	header	files	to	choose
from	when	you	want	to	include	one	into	your	C	program.	However,	there	may	be
specifications	to	fulfill,	like	particular	configuration	parameters	and	so	on.	To	be	able
to	accomplish	your	task,	here	are	some	conditionals	you	may	want	to	use:

#if	SYSTEM_1	#	include	“system_1.h”	#elifSYSTEM_2	#	#include
“system_2.h”	#elifSYSTEM_3	…	#endif

Does	this	help	you	accomplish	your	mission?	It	sure	does	–	but	it	brings	along	a
problem.	If	you	continue	with	the	above	conditionals,	soon	it	is	going	to	prove	too
tedious	for	comfort	or	even	too	clumsy	for	your	concentration.	So	it	is	advisable	to
make	use	of	the	advantages	of	C,	where	you	can	use	a	macro	to	represent	a	header
name;	a	function	your	pre-processor	has	enabled.	When	you	do	this,	you	speak	of
utilizing	a	computed	include.	In	short,	you	do	not	write	any	header	name	anywhere,
the	way	you	would	do	as	an	#include	argument.	This	is	how	to	use	a	macro	name:

#define	SYSTEM_H	“system_1.h”	…	#include	SYSTEM_H

Any	idea	what	is	going	to	happen?	SYSTEM_H	as	you	see	it	will	undergo	expansion.
In	the	process,	your	pre-processor	will	be	seeking	out	system_1.h	just	as	would
happen	if	your	#include	had	been	there	all	along,written	as	it	is.

C	Type	Casting

	

What	do	you	reckon	type	casting	is	within	the	context	of	the	C	programming
language?	It	is	one	of	the	easiest	things	you	will	learn	about	C.	For	starters,	you	can
define	it	as	a	means	of	converting	a	variable	from	what	it	is,	to	a	different	data	type.

	

You	may,	for	instance,	wish	to	have	a	long-value	integer	into	just	a	simple	one.	In
such	a	case,	you	could	typecast	long	onto	int.	Alternatively,	you	could	do	your	value
conversion	from	one	integer	to	another	by	overtly	making	use	of	the	cast	operator.

	

You	can	also	explain	type	casting	as	alteration	of	a	particular	expression	associated
with	a	particular	type	so	that	it	now	belongs	to	a	different	type.	Type	casting	is	a
common	thing	in	C	language	programming.	It	is	generally	advisable	to	alter	lower

data	type	turning	it	to	a	higher	data	type	because	that	way	you	do	not	risk	losing	data.
On	the	other	hand,	whenever	you	convert	higher	data	type	to	a	lower	data	type,	you
find	your	data	having	been	truncated.	Just	to	give	you	an	idea,	if	you	were	to	convert
float	to	int,	all	data	coming	after	the	decimal	disappears.

	

Another	yet	simpler	explanation	of	what	typecasting	is	indicates	that	it	is	one	way	of
making	a	type	of	variable	to	behave	as	if	it	were	another	type.	You	can	take	an
example	of	an	int	acting	as	if	it	were	a	char;	and	the	behavior	alluded	to	here	is	a	one-
time	thing	–	only	during	the	operation	at	hand.	If	you	want	an	easy	way	to	typecast,
simply	pick	the	variable	type	of	your	choice,	and	then	put	it	within	parenthesis	before
the	variable	whose	behavior	you	want	altered.	For	example,	(char)a	outright	makes
variable	a	to	function	as	if	it	is	a	char.

	

	

See	one	illustration	below:

	

(type_name)	expression

	

You	may	also	wish	to	learn	from	a	situation	where	a	floating	point	operation	takes
place.	In	such	a	scenario,	you	have	the	cast	operator	causing	a	split	of	an	integer
variable,	actually	being	done	by	another.	Look	at	the	illustration	here	below:

	

#include	<stdio.h>	#include	<stdio.h>	main()	{	int	sum	=	17,	count	=	5;
double	mean;		mean	=	(double)	sum	/	count;	printf(“Value	of	mean	:	%f\n”,
mean);

The	result	returned	after	compilation	and	also	execution	of	the	code	laid	out	above	is
as	follows:

	

Value	of	mean	:
3.400000

	

What	you	need	to	know	at	this	point	is	that	the	program’s	cast	operator	takes	priority,
or	has	precedence	over	any	integer	division	or	division	of	any	other	sort.
Consequently,	the	sum	value	is	straightaway	converted	into	type	double;	and	only
after	that	is	it	divided	following	count	with	a	double	value.

	

At	times,	however,	you	have	type	conversions	that	are	implicit,	being	done

automatically	by	the	C	compiler.	Other	times,	the	type	conversions	happening
explicitly	via	the	employment	of	the	program	cast	operator.	Good	practice	calls	for
you	to	engage	the	cast	operator	when	you	need	to	make	type	conversions.

	

How	the	integer	promotion	works

	

Integer	promotion	in	C	is	the	simple	process	whereby	integer	type	values	smaller	than
int,	or	otherwise	unsigned	int,	happen	to	undergo	conversion	so	that	they	become
either	int,	or	alternatively,	unsigned	int.

	

Here	is	an	example	where	you	add	a	character	accompanied	by	an	integer:

	

#include	<stdio.h>	main()	{	int	i	=	17;	char	c	=	‘c’;	/*	ascii	values	is	99	*/	int
sum;	sum	=	i	+	c;	printf(“value	of	sum	:	%d/n”,		sum);	}

	

Have	you	any	idea	what	result	you	get	after	compilation	and	subsequent
execution	of	the	code	just	above?	Here	it	is:

	

Value	of	sum	:	116

Chapter	13:	Benefits	Of	Using	The	C	Language
It	is	an	established	fact	that	C,	as	a	programming	language,	is	very	popular,	in	spite	of
the	fact	that	it	came	into	the	market	more	than	three	decades	ago.	It	is	popular	too
notwithstanding	the	emergence	of	newer	programming	languages.	A	beginner	may
wonder:	What	is	it	that	attracts	users	to	pick	C	and	not	any	other	programming
language,	or	in	some	cases,	in	addition?

Here	are	some	of	the	positive	things	users	have	said	about	C:

1.	 The	C	language	provides	a	foundation	for	several	other	programming	languages.	Not
only	does	it	have	a	lot	in	common	with	its	newer	variations,	like	C++	and	others,	but
other	computer	languages	have	picked	fundamental	principles	from	it.	For	that	reason,
C	is	taken	to	be	the	main	building	block	for	many	computer	languages	existing	in	the
market	today.

2.	 The	C	programming	language	is	rich	in	data	types	and	has	a	wide	range	of	operators.
These	operators	are	not	just	many	but	they	are	also	very	powerful	in	their	execution	of
commands	and	functions.	It	is	for	this	reason	that	many	users	have	found	C	to	be
highly	efficient,	impressively	fast,	and	also	pretty	easy	to	comprehend	and	use.

3.	 C	is	one	computer	language	that	you	can	aptly	term	portable.	What	does	that
portability	entail?	Well,	the	C	language	is	one	that	you	can	write	purposely	for	one
computer,	and	then	you	find	it	easy	to	run	and	use	on	an	entirely	different	computer.
Often	you	are	able	to	do	that	without	having	to	alter	a	thing,	and	if	it	is	necessary	to
make	some	changes,	they	are	often	minimal.

4.	 The	C	programming	language	has	a	range	of	keywords	that	you	can	remember	with
ease.	They	are	just	32	in	number.	However,	C	has	the	advantage	of	having	built	in
functions,	and	these	make	the	use	of	C	all	the	more	efficient.	C	has	at	its	disposal	a
reasonable	number	of	standard	functions,	and	these	enable	users	to	develop	programs
with	relative	ease.

5.	 C	can	be	said	to	be	versatile.	With	the	great	number	of	functions	that	it	spools	from	its
library,	it	does	not	only	extend	itself	as	need	be,	but	it	also	enables	the	user	to	add
personalized	functions	to	the	library	with	relative	ease.	On	the	overall,	C	makes
programming	easy	whether	you	are	a	beginner	or	a	veteran.

6.	 The	C	programming	language	is	among	the	best	structured	languages	in	use	in	the
computer	world.	For	that	reason,	as	a	user,	you	are	able	to	think	of	a	challenge	in
terms	of	C’s	function	modules;	or	what	you	might	call	blocks.

	

Being	well	structured	brings	other	advantages.	For	starters,	being	able	to	fit	a	problem
to	where	it	belongs	in	terms	of	function	blocks,	means	you	can	rectify	the	problem
faster.	Also	the	fact	that	C	is	an	assembly	of	modules	making	a	whole	program	means
understanding	and	dealing	with	the	entire	program	is	easy.	By	the	same	token,	it
becomes	easy	for	someone	to	debug,	test	and	also	maintain	this	modular	structure	that
is	the	C	programming	language.

	

7.	 C	is	procedure	oriented

Where	does	the	advantage	lie	in	this	case?	Well,	it	is	in	your	ability	to	create	your
customized	procedures	or	even	functions,	which	you	can	then	apply	to	suit	your
environment,	executing	your	tasks	as	you	deem	appropriate.

	

Another	benefit	that	comes	with	being	procedure	oriented	is	that	of	ease	of	learning.
This	is	because	C	adheres	to	specific	algorithms	in	executing	your	statements.

	

8.	 The	compilation	speed	experienced	in	C	is	far	ahead	of	other	programming	languages.
In	actual	fact,	C’s	compiler	is	capable	of	compiling	about	a	thousand	code	lines	in	one
or	two	seconds.	The	speed	is	further	enhanced	by	optimization	of	the	code	making
execution	exemplary	fast.

9.	 C’s	syntax	is	easy	to	understand	for	its	language.	You	will	find	its	keywords	mainly	in
English,	which	makes	it	easy	for	many	users	to	remember	them.	Some	examples	of
English	words	in	the	syntax	are	switch;	if;	else;	and	so	on.
10.												The	C	programming	languages	accords	you	great	preparation	for	other
programming	languages.	Once	you	master	C,	you	are	in	a	position	to	easily	learn
application	development.

	

The	Challenges	Faced	By	Users

In	most	cases,	there	is	more	than	one	side	to	an	issue.	In	our	case,	to	this	highly
popular	programming	language.		Good	and	handy	as	it	is,	the	C	language	does	present
some	challenges	sometimes.	Here	they	are:

(1)	The	C	programming	language	does	not	have	Object	Oriented	Programming
System,	otherwise	referred	to	as	OOPS.	Be	that	as	it	may,	developers	of	C	have	gotten
over	that	hitch	through	development	of	the	more	modern	C++,	a	variant	of	the
original	C.

(2)	C	does	not	avail	runtime	checking

(3)	The	rules	of	C	are	not	very	stringent	especially	when	it	comes	to	type	checking.
That	is	why	you	can	easily	overlook	an	integer	value.

(4)	There	is	a	challenge	relating	to	floating	data	type

(5)	The	C	programming	language	also	fails	to	have	the	namespace	concept

(6)	It	also	fails	to	have	the	constructor	concept	as	well	as	the	destructor	concept.

Looking	at	the	whole	picture	of	advantages	gauged	against	the	disadvantages,	it	is
clear	that	the	advantages	outweigh	the	challenges.	In	actual	fact,	a	good	number	of
the	challenges	are	somewhat	lightweight	and	users	are	able	to	live	with	them	without

jeopardizing	their	work	or	use.

	

	

	
	

	

Conclusion
How	great	it	is	to	finally	have	a	book	with	simple	tips	on	the	C	programming
language!	Everyone	who	has	wanted	to	learn	what	the	C	language	is	all	about	can
now	learn	that	from	this	book,	C	Programming:	The	Ultimate	Guide	For	Beginners.

If	you	have	completed	reading	it,	I	hope	you	now	understand	the	reason	C	is	so
popular	amongst	programmers	and	other	computer	users	who	are	technology	savvy.	I
also	hope	that	you	have	learnt	specifically	the	type	of	data	C	handles	and	how	it	does
it;	how	it	stores	its	files	and	how	you	can	retrieve	them;	and	all	the	numerous	other
details	that	make	the	C	programming	language	popular	over	many	other	computer
languages	in	the	market.

It	is	our	hope	that	you	have	found	this	book	a	helpful	guide.

Resources	and	Attributions
1.	 After	All	These	Years,	the	World	is	Still	Powered	by	C	Programming:

https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-
programming

2.	 The	10	Most	Powerful	Supercomputers:	
https://www.weforum.org/agenda/2015/07/10-most-powerful-supercomputers/

3.	 Where	is	My	Linux	GNU	C	or	GCC	Compilers	Are	Installed?

http://www.cyberciti.biz/faq/locate-linux-gnu-c-or-gcc-compiler-location/

4.	 developer.apple.com/technologies/tools/
5.	 Data	types	in	C	language:	http://www.studytonight.com/c/datatype-in-c.php
6.	 C	32	keywords:	http://www.c4learn.com/c-programming/c-keywords/
7.	 C	Programming	Keywords	and	Identifiers:

https://www.google.com/#q=double+keywords+in+c+language
8.	 Escape	sequences	in	C:	https://en.wikipedia.org/wiki/Escape_sequences_in_C
9.	 The	C	Preprocessor:	https://www.cs.cf.ac.uk/Dave/C/node14.html

10.		Operators	in	C	Language:	http://www.studytonight.com/c/operators-in-c.php
11.		C	programming	while	and	do…while	loop:	http://www.programiz.com/c-
programming/c-do-while-loops
12.		C-Function:	http://fresh2refresh.com/c-programming/c-function/
13.	The	crazy	programmer:	http://www.thecrazyprogrammer.com/2013/07/what-
are-advantages-and-disadvantages.html
14.	C	Language	Advantages	and	Disadvantages	:	C	Language	Features:
http://latest-technology-guide.blogspot.co.ke/2012/12/c-language-advantages-and-
disadvantages.html

	
	

	

	

	

	

https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
https://www.weforum.org/agenda/2015/07/10-most-powerful-supercomputers/
http://www.cyberciti.biz/faq/locate-linux-gnu-c-or-gcc-compiler-location/
http://www.studytonight.com/c/datatype-in-c.php
http://www.c4learn.com/c-programming/c-keywords/
https://www.google.com/#q=double+keywords+in+c+language
https://en.wikipedia.org/wiki/Escape_sequences_in_C
https://www.cs.cf.ac.uk/Dave/C/node14.html
http://www.studytonight.com/c/operators-in-c.php
http://www.programiz.com/c-programming/c-do-while-loops
http://fresh2refresh.com/c-programming/c-function/
http://www.thecrazyprogrammer.com/2013/07/what-are-advantages-and-disadvantages.html
http://latest-technology-guide.blogspot.co.ke/2012/12/c-language-advantages-and-disadvantages.html

	Introduction
	Chapter 1: What Is The C Language?
	Chapter 2: Setting Up Your Local Environment
	Chapter 3: The C Structure and Data Type
	Chapter 4: C Constants and Literals
	Chapter 5: C Storage Classes
	Chapter 6: Making Decisions In C
	Chapter 7: The Role Of Loops In C Programming
	Chapter 8: Functions in C Programming
	Chapter 9: Structures and Union in C
	Chapter 10: Bit Fields and Typedef Within C
	Chapter 11: Input Output (I/O) In C
	Chapter 12: C Header Files and Type Casting
	Chapter 13: Benefits Of Using The C Language
	Conclusion
	Resources and Attributions

